
The MySQL Test Framework

The MySQL Test Framework
Abstract

This manual describes the MySQL test framework.

Document generated on: 2009-06-02 (revision: 15165)

Copyright 2006-2008 MySQL AB, 2009 Sun Microsystems, Inc.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed
copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or
edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing a translation, please contact the Documentation Team.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Table of Contents
Preface .. .v
1. Introduction to the MySQL Test Framework1
2. MySQL Test Framework Components .. .2

2.1. Test Framework System Requirements .. .4
2.2. The Test Framework and SSL4
2.3. How to Report Bugs in the MySQL Test Suite .. .4

3. Running Test Cases .. .6
3.1. Constraints on Simultaneous Test Runs .. .6

4. Writing Test Cases .. .7
4.1. Writing a Test Case: Quick Start .7
4.2. Test Case Coding Guidelines .. .8

4.2.1. File Naming and Organization Guidelines .. .8
4.2.2. Test Case Content-Formatting Guidelines .. .8
4.2.3. Naming Conventions for Database Objects .. .9

4.3. Sample Test Case .. 10
4.4. Cleaning Up from a Previous Test Run ... 10
4.5. Generating a Test Case Result File .. 11
4.6. Checking for Expected Errors .. 11
4.7. Controlling the Information Produced by a Test Case .. 12
4.8. Dealing with Output That Varies Per Test Run ... 13
4.9. Passing Options from mysql-test-run.pl to mysqld or mysqltest . 15
4.10. Specifying Test Case-Specific Server Options .. 15
4.11. Using Include Files to Simplify Test Cases .. 15
4.12. Controlling the Binary Log Format Used for Tests .. 16

4.12.1. Controlling the Binary Log Format Used for an Entire Test Run ... 16
4.12.2. Specifying the Required Binary Log Format for Individual Test Cases .. 17

4.13. Writing Replication Tests .. 17
4.14. Thread Synchronization in Test Cases .. 18
4.15. Other Tips for Writing Test Cases .. 19

5. MySQL Test Programs ... 20
5.1. mysqltest — Program to Run Test Cases .. 20
5.2. mysql_client_test — Test Client API .. 23
5.3. mysql-test-run.pl — Run MySQL Test Suite .. 24
5.4. mysql-stress-test.pl — Server Stress Test Program ... 32

6. mysqltest Language Reference .. 35
6.1. mysqltest Input Conventions .. 35
6.2. mysqltest Commands .. 36
6.3. mysqltest Variables .. 49
6.4. mysqltest Flow Control Constructs .. 49
6.5. Error Handling .. 50

7. Creating and Executing Unit Tests .. 51
Index ... 52

iv

Preface
MySQL distributions include a set of test cases and programs for running them. These tools constitute the MySQL test framework
that provides a means for verifying that MySQL Server and its client programs operate according to expectations. The test cases
consist mostly of SQL statements, but can also use test language constructs that control how to run tests and verify their results.

This manual describes the MySQL test framework. It describes the programs used to run tests and the language used to write test
cases.

Much of the content of this manual is based on material originally written by (in alphabetical order) Omer BarNir, Kent Boortz, and
Matthias Leich.

People within MySQL AB who work with MySQL testing include Omer BarNir and Matthias Leich (test case development, test
standards development) and Magnus Svensson (testing tools development).

v

Chapter 1. Introduction to the MySQL Test Framework
MySQL distributions include a set of test cases and programs for running them. These tools constitute the MySQL test framework
that provides a means for verifying that MySQL Server and its client programs operate according to expectations. The test cases
consist mostly of SQL statements, but can also use test language constructs that control how to run tests and verify their results. As
of MySQL 5.1, distributions also provide facilities for running unit tests and creating new unit tests.

This document describes the components of the MySQL test framework, how the test programs work, and the language used for
writing test cases. It also provides a tutorial for developing test cases and executing them.

The application that runs the test suite is named mysql-test-run.pl. Its location is the mysql-test directory, which is
present both in source and binary MySQL Server distributions.

Note

There are actually two scripts for running the test suite. The mysql-test-run.pl Perl script is the main applica-
tion used to run the test suite. It invokes mysqltest to run individual test cases. Prior to MySQL 4.1, a similar shell
script, mysql-test-run, can be used instead. mysql-test-run.pl is the script name used in discussion and
examples throughout this document. If you are using a version of MySQL older than MySQL 4.1, substitute mysql-
test-run appropriately.

The mysql-test-run.pl application starts MySQL servers, restarts them as necessary when a specific test case needs differ-
ent start arguments, and presents the test result. For each test case, mysql-test-run.pl invokes the mysqltest program
(also referred to as the “test engine”) to read the test case file, intepret the test language constructs, and send SQL statements to the
server.

Input for each test case is stored in a file, and the expected result from running the test is stored in another file. The expected result
can be compared to the actual result produced by running a test to verify proper processing of the input by MySQL.

For a MySQL source distribution, mysql-test-run.pl is located in the mysql-test directory, and mysqltest is located
in the client directory. The mysql-test and client directories are located in the root directory of the distribution.

For a MySQL binary distribution, mysql-test-run.pl is located in the mysql-test directory, and mysqltest is located
in the same directory where other client programs such as mysql or mysqladmin are installed. The locations of the mysql-
test and client directories depend on the layout used for the distribution format.

Within the mysql-test directory, test case input files and result files are stored in the t and r directories, respectively. The in-
put and result files have the same basename, which is the test name, but have extensions of .test and .result, respectively.
For example, for a test named “decimal,” the input and result files are mysql-test/t/decimal.test and mysql-
test/r/decimal.result.

Each test file is referred to as one test case, but usually consists of a sequence of related tests. An unexpected failure of a single
statement in a test case makes the test fail.

There are several ways a test case can fail:

• The mysqltest test engine checks the result codes from executing each SQL statement in the test input. If the failure is unex-
pected, the test case fails.

• A test case can fail if an error was expected but did not occur (for example, if an SQL statement succeeded when it should have
failed).

• The test case can fail by producing incorrect output. As a test runs, it produces output (the results from SELECT, SHOW, and
other statements). This output is compared to the expected result found in the mysql-test/r directory (in a file with a
.result suffix). If the expected and actual results differ, the test case fails. The actual test result is written to a file in the
mysql-test/r directory with a .reject suffix, and the difference between the .result and .reject files is presented
for evaluation.

This method of checking test results puts some restrictions on how test cases can be written. For example, the result cannot contain
information that varies from run to run, such as the current time. However, if the information that varies is unimportant for test
evaluation, there are ways to instruct the test engine to replace those fields in the output with fixed values.

Because the test cases consist mostly of SQL statements in a text file, there is no direct support for test cases that are written in C,
Java, or other languages. Such tests are not within the scope of this test framework. But the framework does support executing your
own scripts and initiating them with your own data. Also, a test case can execute an external program, so in some respects the test
framework can be extended for uses other than testing SQL statements.

1

Chapter 2. MySQL Test Framework Components
The MySQL test framework consists of programs that run tests, and directories and files used by those programs.

Test Framework Programs

The MySQL test framework uses several programs:

• The mysql-test-run.pl Perl script is the main application used to run the test suite. It invokes mysqltest to run indi-
vidual test cases. (Prior to MySQL 4.1, a similar shell script, mysql-test-run, can be used instead.)

• mysqltest runs test cases. A version named mysqltest_embedded is similar but is built with support for the
libmysqld embedded server.

• The mysql_client_test program is used for testing aspects of the MySQL client API that cannot be tested using
mysqltest and its test language. mysql_client_test_embedded is similar but used for testing the embedded server.

• The mysql-stress-test.pl Perl script performs stress-testing of the MySQL server. (MySQL 5.0 and up only)

• A unit-testing facility is provided so that individual unit test programs can be created for storage engines and plugins. (MySQL
5.1 and up only)

Test suite programs can be found in these locations:

• For a source distribution, mysqltest is in the client directory. For a binary distribution, it is in the MySQL bin directory.

• For a source distribution, mysql_client_test is in the tests directory. For a binary distribution, it is in the MySQL
bin directory.

• The other programs are located in the mysql-test directory. For a source distribution, mysql-test is found under the
source tree root. For a binary distribution, the location of mysql-test depends on the layout used for the distribution format.

Test Framework Directories and Files

The test suite is located in the mysql-test directory, which contains the following components:

• The mysql-test-run.pl and mysql-stress-test.pl programs that are used for running tests.

• The t directory contains test case input files. A test case file might also have option files associated with it.

• A file name of the form test_name.test is a test case file for a test named test_name. For example, sub-
query.test is the test case file for the test named subquery.

• A file name of the form test_name-master.opt provides options to associate with the named test case. mysql-
test-run.pl restarts the server with the options given in the file if the options are different from those required for the
currently running server.

Note that the -master.opt file is used for the “main” server of a test, even if no replication is involved.

• A file name of the form test_name-slave.opt provides slave options.

• A file name of the form test_name-im.opt provides Instance Manager options.

• The disabled.def file contains information about deferred/disabled tests. When a test is failing because of a bug in the
server and you want it to be ignored by mysql-test-run.pl, list the test in this file.

The format of a line in the disabled.def file looks like this, where fields are separated by one or more spaces (Tab
characters are not allowed):

test_name : BUG#nnnnn YYYY-MM-DD disabler comment

Example:

rpl_row_blob_innodb : Bug#18980 2006-04-10 kent Test fails randomly

2

http://bugs.mysql.com/18980

test_name is the test case name. BUG#nnnnn indicates the bug related to the test that causes it to fail (and thus requires
it to be disabled). disabler is the name of the person that disabled the test. comment normally provides a reason why
the test was disabled.

A comment line can be written in the file by beginning the line with a “#” character.

• The r directory contains test case result files:

• A file name of the form test_name.result is the expected result for the named test case. A file
r/test_name.result is the output that corresponds to the input in the test case file t/test_name.test.

• A file name of the form test_name.reject contains output for the named test case if the test fails.

For a test case that succeeds, the .result file represents both the expected and actual result. For a test case that fails, the
.result file represents the expected result, and the .reject file represents the actual result.

If a .reject file is created because a test fails, mysql-test-run.pl removes the file later the next time the test succeeds.

• The include directory contains files that are included by test case files using the source command. These include files en-
capsulate operations of varying complexity into a single file so that you can perform the operations in a single step. See Sec-
tion 4.11, “Using Include Files to Simplify Test Cases”.

• The lib directory contains library files used by mysql-test-run.pl, and database initialization SQL code.

• The std_data directory contains data files used by some of the tests.

• The var directory is used during test runs for various kinds of files: log files, temporary files, trace files, Unix socket files for
the servers started during the tests, and so forth. This directory cannot be shared by simultaneous test runs.

Unit test-related files are located in the unittest directory. Additional files specific to storage engines and plugins may be
present under the subdirectories of the storage or plugin directories.

Test Execution and Evaluation

There are a number of targets in the top-level Makefile that can be used to run sets of tests. make test runs all the tests. Other
targets run subsets of the tests, or run tests with specific options for the test programs. Have a look at the Makefile to see what
targets are available.

A “test case” is a single file. The case might contain multiple individual test commands. If any individual command fails, the entire
test case is considered to fail. Note that “fail” means “does not produce the expected result.” It does not necessarily mean “executes
without error,” because some tests are written precisely to verify that an illegal statement does in fact produce an error. In such an
instance, if the statement executes successfully without producing the expected error, that is considered failure of the test.

Test case output (the test result) consists of:

• Input SQL statements and their output. Each statement is written to the result followed by its output. Columns in output result-
ing from SQL statements are separated by tab characters.

• The result from mysqltest commands such as echo and exec. The commands themselves are not echoed to the result, only
their output.

The disable_query_log and enable_query_log commands control logging of input SQL statements. The dis-
able_result_log and enable_result_log commands control logging of SQL statement results, and warning or error
messages resulting from those statements.

mysqltest reads a test case file from its standard input by default. The --test-file or -x option can be given to name a test
case file explicitly.

mysqltest writes test case output to the standard output by default. The --result-file or -R option can be used to indicate
the location of the result file. That option, together with the --record option, determine how mysqltest treats the test actual
and expected results for a test case:

• If the test produces no results, mysqltest exits with an error message to that effect.

• Otherwise, if --result-file is not given, mysqltest sends test results to the standard output.

MySQL Test Framework Components

3

• With --result-file but not --record, mysqltest reads the expected results from the given file and compares them
with the actual results. If the results do not match, mysqltest writes a .reject file in the same directory as the result file
and exits with an error.

• With both --result-file and --record, mysqltest updates the given file by writing the actual test results to it.

mysqltest itself knows nothing of the t and r directories under the mysql-test directory. The use of files in those director-
ies is a convention that is used by mysql-test-run.pl, which invokes mysqltest with the appropriate options for each test
case to tell mysqltest where to read input and write output.

2.1. Test Framework System Requirements
The mysqltest and mysql_client_test programs are written in C and are available on any system where MySQL itself
can be compiled, or for which a binary MySQL distribution is avaiable.

Other parts of the test framework such as mysql-test-run.pl are Perl scripts and should run on systems with Perl installed.

mysqltest uses the diff program to compare expected and actual test results. If diff is not found, mysqltest writes an er-
ror message and dumps the entire contents of the .result and .reject files so that you can try to determine why a test did not
succeed. If your system does not have diff, you may be able to obtain it from one of these sites:

http://www.gnu.org/software/diffutils/diffutils.html
http://gnuwin32.sourceforge.net/packages/diffutils.htm

2.2. The Test Framework and SSL
When mysql-test-run.pl starts, it checks whether mysqld supports SSL connections:

• If mysqld supports SSL, mysql-test-run.pl starts it with the proper --ssl-xxx options that enable it to accept SSL
connections for those test cases that require secure connections (those with “ssl” in their name). As mysql-test-run.pl
runs test cases, a secure connection to mysqld is initiated for those cases that require one. For those test cases that do not re-
quire SSL, an unencrypted connection is initiated.

• If mysqld does not support SSL, mysql-test-run.pl skips those test cases that require secure connections.

If mysql-test-run.pl is started with the --ssl option, it sets up a secure conection for all test cases. In this case, if
mysqld does not support SSL, mysql-test-run.pl exits with an error message: Couldn't find support for SSL

For mysql-test-run (the shell version), the --with-openssl option corresponds to the --ssl option for mysql-
test-run.pl.

2.3. How to Report Bugs in the MySQL Test Suite
If test cases from the test suite fail, you should do the following:

• Do not file a bug report before you have found out as much as possible about what when wrong. See the instructions at ht-
tp://dev.mysql.com/doc/mysql/en/bug-reports.

• Make sure to include the output of mysql-test-run.pl, as well as contents of all .reject files in the mysql-test/r
directory.

• Check whether an individual test in the test suite also fails when run on its own:

shell> cd mysql-test
shell> ./mysql-test-run.pl test_name

If this fails, you should configure MySQL with --with-debug and run mysql-test-run.pl with the --debug option.
If this also fails, send the trace file mysql-test/var/tmp/master.trace to ftp://ftp.mysql.com/pub/mysql/upload/ so
that we can examine it. Please remember to also include a full description of your system, the version of the mysqld binary
and how you compiled it.

• Run mysql-test-run.pl with the --force option to see whether any other tests fail.

• If you have compiled MySQL yourself, check the MySQL Reference Manual to see whether there are any platform-specific is-
sues for your system. There might be configuration workarounds to deal with the problems that you observe. Also, consider us-

MySQL Test Framework Components

4

http://www.gnu.org/software/diffutils/diffutils.html
http://gnuwin32.sourceforge.net/packages/diffutils.htm
http://dev.mysql.com/doc/mysql/en/bug-reports
http://dev.mysql.com/doc/mysql/en/bug-reports
ftp://ftp.mysql.com/pub/mysql/upload/

ing one of the binaries we have compiled for you at http://dev.mysql.com/downloads/. All our standard binaries should pass the
test suite!

• If you get an error such as Result length mismatch or Result content mismatch it means that the output of the
test was not an exact match for the expected output. This could be a bug in MySQL or it could be that your version of mysqld
produces slightly different results under some circumstances.

The results file is located in the r directory and has a name with a .result extension. A failed test result is put in a file with
the same basename as the result file and a .reject extension. If your test case is failing, you should use diff to compare the
.result and .reject files. If you cannot see how they are different, examine both with od -c and also check their
lengths.

• If a test fails completely, you should check the logs file in the mysql-test/var/log directory for hints of what went
wrong.

• If you have compiled MySQL with debugging, you can try to debug test failures by running mysql-test-run.pl with
either or both of the --gdb and --debug options.

If you have not compiled MySQL for debugging you should probably do so by specifying the --with-debug option when
you invoke configure.

MySQL Test Framework Components

5

http://dev.mysql.com/downloads/

Chapter 3. Running Test Cases
Typically, you run the test suite either from within a source tree (after MySQL has been built), or on a host where the MySQL serv-
er distribution has been installed. To run tests, your current working directory should be the mysql-test directory of your source
tree or installed distribution. In a source distribution, mysql-test is under the root of the source tree. In a binary distribution, the
location of mysql-test depends on the distribution layout. The program that runs the test suite, mysql-test-run.pl, will
figure out whether you are in a source tree or an installed directory tree.

To run the test suite, change location into your mysql-test directory and invoke the mysql-test-run.pl script:

shell> cd mysql-test
shell> ./mysql-test-run.pl

mysql-test-run.pl accepts options on the command line. For example:

shell> ./mysql-test-run.pl --force --local

By default, mysql-test-run.pl exits if a test case fails. --force causes execution to continue regardless of test case failure.

The --local option tells mysql-test-run.pl not to use an already running server, but to start a server itself to use for the
tests. This option is the default as of MySQL 4.1, so it is necessary only before 4.1.

For a full list of the supported options, see Section 5.3, “mysql-test-run.pl — Run MySQL Test Suite”.

To run one or more specific test cases, name them on the mysql-test-run.pl command line. Test case files have names like
t/test_name.test, where test_name is the name of the test case, but each name given on the command line should be the
test case name, not the full test case file name. The following command runs the test case named rpl_abcd, which has a test file
of t/rpl_abcd.test:

shell> ./mysql-test-run.pl rpl_abcd

To run a family of test cases for which the names share a common prefix, use the --do-test option:

shell> ./mysql-test-run.pl --do-test=prefix

For example, the following command runs the replication tests (test cases that have names beginning with rpl):

shell> ./mysql-test-run.pl --do-test=rpl

mysql-test-run.pl starts the MySQL server if necessary, sets up the environment for calling the mysqltest program, and
invokes mysqltest to run the test case. For each test case to be run, mysqltest handles operations such as reading input from
the test case file, creating server connections, and sending SQL statements to servers.

The language used in test case files is a mix of commands that the mysqltest program understands and SQL statements. Input
that mysqltest doesn't understand is assumed to consist of SQL statements to be sent to the database server. This makes the test
case language familiar to those that know how to write SQL and powerful enough to add the control needed to write test cases.

You need not start a MySQL server first before running tests. Instead, the mysql-test-run.pl program will start the server or
servers as needed. Any servers started for the test run use ports in the range around 9300. To avoid conflicts, a production server
should not use ports in that range, if you happen to have one on the same machine.

3.1. Constraints on Simultaneous Test Runs
To perform multiple test runs simultaneously on the same machine, you must specify for each mysql-test-run.pl invocation
which ports to use so that no test run conflicts with others running concurrently. To do this, add unique port arguments to mysql-
test-run.pl, such as --master_port=3911 --slave_port=3927 --no-manager.

Only one instance of mysql-test-run.pl can run at a time in the same mysql-test directory on a shared drive. The
mysql-test/var directory created and used by mysql-test-run.pl cannot be shared between simultaneous test runs. A
test run can use the --var=dir_path option to specify an alternate directory not used by other runs.

6

Chapter 4. Writing Test Cases
Normally, you run the test suite during the development process to ensure that your changes do not cause existing test cases to
break. You can also write new test cases or add tests to existing cases. This happens when you fix a bug (so that the bug cannot re-
appear later without being detected) or when you add new capabilities to the server or other MySQL programs.

This chapter provides guidelines for developing new test cases for the MySQL test framework.

Note

All our test cases are published on the Internet. Take care that their contents include no confidential information.

Some definitions:

• One “test file” is one “test case.”

• One “test case” might contain a “test sequence” (that is, a number of individual tests that are grouped together in the same test
file).

• A “command” is an input test that mysqltest recognizes and executes itself. A “statement” is an SQL statement or query
that mysqltest sends to the MySQL server to be executed.

4.1. Writing a Test Case: Quick Start
The basic principle of test case evaluation is that output resulting from running a test case is compared to the expected result. This
is just a diff comparison between the output and an expected-result file that the test writer provides. This simplistic method of
comparison does not by itself provide any way to handle variation in the output that may occur when a test is run at different times.
However, the test language provides commands for postprocessing result output before the comparison occurs. This enables you to
manage certain forms of expected variation.

Use the following procedure to write a new test case. In the examples, test_name represents the name of the test case. It is as-
sumed here that you'll be using a development source tree, so that when you create a new test case, you can commit the files associ-
ated with it to the source repository for others to use.

1. Change location to the test directory mysql-version/mysql-test:

shell> cd mysql-version/mysql-test

mysql-version represents the root directory of your source tree, such as mysql-5.0 or mysql-5.1.

2. Create the test case in a file t/test_name.test. You can do this with any text editor. For details of the language used for
writing mysqltest test cases, see Chapter 6, mysqltest Language Reference.

3. Create an empty result file:

shell> touch r/test_name.result

4. Run the test:

shell> ./mysql-test-run.pl test_name

5. Assuming that the test case produces output, it should fail because the output does not match the result file (which is empty at
this point). The failure results in creation of a reject file named r/test_name.reject. Examine this file. If the reject file
appears to contain the output that you expect the test case to produce, copy its content to the result file:

shell> cp r/test_name.reject r/test_name.result

Another way to create the result file is by invoking mysql-test-run.pl with the --record option to record the test
output in the result file:

shell> ./mysql-test-run.pl --record test_name

6. Run the test again. This time it should succeed:

shell> ./mysql-test-run.pl test_name

7

You can also run the newly created test case as part of the entire suite:

shell> ./mysql-test-run.pl

It is also possible to invoke the mysqltest program directly. If the test case file refers to environment variables, you will need to
define those variables in your environment first. For more information about the mysqltest program, see Section 5.1,
“mysqltest — Program to Run Test Cases”.

4.2. Test Case Coding Guidelines

4.2.1. File Naming and Organization Guidelines
Test case file names should be lowercase ASCII with no spaces.

We are adding support for multiple test “suites.” Until then, all test cases must be located in the mysql-test/t directory. Test
case file names consist of the test name with a .test suffix. For example, a test named foo should be written in the file mysql-
test/t/foo.test.

One test case file can be a collection of individual tests that belong together. If one of the tests fails, the entire test case fails. Al-
though it may be tempting to write each small test into a single file, that will be too inefficient and makes test runs unbearably
slow. So make the test case files not too big, not too small.

Each test case (that is, each test file) must be self contained and independent of other test cases. Do not create or populate a table in
one test case and depend on the table in a later test case. If you have some common initialization that needs to be done for multiple
test cases, create an include file. That is, create a file containing the initialization code in the mysq-test/include directory,
and then put a source command in each test case that requires the code. For example, if several test cases need to have a given ta-
ble created and filled with data, put the statements to do that in a file named mysql-
test/include/create_my_table.inc. Then put the following command in each test case file that needs the initialization
code:

--source include/create_my_table.inc

The file name in the source command is relative to the mysql-test directory.

4.2.2. Test Case Content-Formatting Guidelines
When you write a test case, please keep in mind the following general guidelines.

There are C/C++ coding guidelines in the MySQL Internals manual; please apply them when it makes sense to do so: Coding
Guidelines

Other guidelines may be found in this page, which discusses general principles of test-case writing: How to Create Good Tests

The following guidelines are particularly applicable to writing test cases:

• To write a test case file, use any text editor that uses linefeed (newline) as the end-of-line character.

• Avoid lines longer than 80 characters unless there is no other choice.

• A comment in a test case can be started with the “#” character or the “--” characters. However, if the first word after the “--”
is a word that mysqltest recognizes as a command, mysqltest will execute the comment as a command. For this reason,
it is safest to use the “#” character for comments, so as not to accidentally execute a mysqltest command. For example, --
End of test 43 begins with the “--” characters, but will result in an error message because end is something that
mysqltest thinks is a command.

Note

The “--” syntax for writing comments is deprecated because of the potential for accidentally writing comments that
begin with a keyword and being executed. This syntax cannot be used for comments as of MySQL 5.1.30/6.0.8.

Section 6.1, “mysqltest Input Conventions”, discusses the details of input syntax for mysqltest test cases.

• Use spaces, not tabs.

Writing Test Cases

8

http://forge.mysql.com/wiki/MySQL_Internals_Coding_Guidelines
http://forge.mysql.com/wiki/MySQL_Internals_Coding_Guidelines
http://forge.mysql.com/wiki/How_to_Create_Good_Tests

• Write SQL statements using the same style as our manual:

• Use uppercase for SQL keywords.

• Use lowercase for identifiers (names of objects such as databases, tables, columns, and so forth).

Ignore this guidline if your intent is to test lettercase processing for SQL statements, of course.

Use lowercase for mysqltest commands (echo, sleep, let, and so forth).

You will notice that many existing test cases currently do not follow the lettercase guideline and contain SQL statements writ-
ten entirely in lowercase. Nevertheless, please use the guideline for new tests. Lettercase for older tests can be left as is, unless
perhaps you need to revise them significantly.

• Break a long SQL statement into multiple lines to make it more readable. This means that you will need to write it using a “;”
delimiter at the end of the statement rather than using “--” at the beginning because the latter style works only for single-line
statements.

• Include comments. They save the time of others. In particular:

• Please include a header in test files that indicates the purpose of the test and references the corresponding worklog task, if
any.

• Comments for a test that is related to a bug report should include the bug number and title.

Worklog and bug numbers are useful because they enable people who are interested in additional background related to the test
case to know which worklog entries or bug reports to read.

Example SQL statement, formatted onto multiple lines for readability:

SELECT f1 AS "my_column", f10
FROM mysqltest1.t5
WHERE (f2 BETWEEN 17 AND 25 OR f2 = 61)
AND f3 IN (SELECT

FROM mysqltest1.t4
WHERE)

ORDER BY ... ;

Example test file header:

########### suite/funcs_1/t/a_processlist_val_no_prot.test #############
#
Testing of values within INFORMATION_SCHEMA.PROCESSLIST
#
The prepared statement variant of this test is
suite/funcs_1/t/b_processlist_val_ps.test.
#
There is important documentation within
suite/funcs_1/datadict/processlist_val.inc
#
Note(mleich):
The name "a_process..." with the unusual prefix "a_" is
caused by the fact that this test should run as second test, that
means direct after server startup and a_processlist_priv_no_prot.
Otherwise the connection IDs within the processlist would differ.
#
Creation:
2007-08-09 mleich Implement this test as part of
WL#3982 Test information_schema.processlist
#
##

Example test reference to bug report:

Bug#3671 Stored procedure crash if function has "set @variable=param"

4.2.3. Naming Conventions for Database Objects
It is possible to run test cases against a production server. (Generally, we will not do that, but our customers might, perhaps acci-
dentally.) Try to write test cases in a way that reduces the risk that running tests will alter or destroy important tables, views, or oth-
er objects. (DROP DATABASE statements are particularly dangerous if written using names that could exist on a customer's ma-
chine.) To avoid such problems, you should use the following naming conventions:

• User names: User names should begin with “mysql” (for example, mysqluser1, mysqluser2)

Writing Test Cases

9

http://bugs.mysql.com/3671

• Database names: Unless you have a special reason not to, use the default database named test that is already created for you.
For tests that need to operate outside the test database, database names should contain “test” and/or begin with “mysql” (for
example, mysqltest1, mysqltest2)

• Table names: t1, t2, t3, ...

• View names: v1, v2, v3, ...

For examples of how to name objects, examine the existing test cases. Of course, you can name columns and other objects inside
tables as you wish.

4.3. Sample Test Case
Here is a small sample test case:

--disable_warnings
DROP TABLE IF EXISTS t1;
--enable_warnings
SET SQL_WARNINGS=1;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES ("hej");

The first few lines try to clean up from possible earlier runs of the test case by dropping the t1 table. The test case uses dis-
able_warnings to prevent warnings from being written to the output because it is not of any interest at this point during the test
to know whether the table t1 was there. After dropping the table, the test case uses enable_warnings so that subsequent warn-
ings will be written to the output. The test case also enables verbose warnings in MySQL using the SET SQL_WARNINGS=1;
statement.

Next, the test case creates the table t1 and tries some operations. Creating the table and inserting the first row are operations that
should not generate any warnings. The second insert should generate a warning because it inserts a non-numeric string into a nu-
meric column. The output that results from running the test looks like this:

DROP TABLE IF EXISTS t1;
SET SQL_WARNINGS=1;
CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES ("hej");
Warnings:
Warning 1265 Data truncated for column 'a' at row 1

Note that the result includes not only the output from SQL statements, but the statements themselves. Statement logging can be dis-
abled with the disable_query_log test language command. There are several options for controlling the amount of output
from running the tests.

If there was a test failure, it will be reported to the screen. You can see the actual output from the last unsuccessful run of the test
case in the reject file r/test_name.reject.

4.4. Cleaning Up from a Previous Test Run
For efficiency, the mysqltest test engine does not start with a clean new database for running each test case, so a test case gener-
ally starts with a “cleaning up section.” Assume that a test case will use two tables named t1 and t2. The test case should begin by
making sure that any old tables with those names do not exist:

--disable_warnings
DROP TABLE IF EXISTS t1,t2;
--enable_warnings

The disable_warnings command instructs the test engine not to log any warnings until an enable_warnings command
occurs or the test case is ended. (MySQL generates a warning if the table t1 or t2 does not exist.) Surrounding this part of the test
case with commands to disable and enable warnings makes its output the same regardless of whether the tables exist before the test
is started. After ensuring that the tables do not exist, we are free to put in any SQL statements that create and use the tables t1 and
t2. The test case should also clean up at the end of the test by dropping any tables that it creates.

Let's put in some SQL code into this test case:

--disable_warnings
DROP TABLE IF EXISTS t1,t2;
--enable_warnings
CREATE TABLE t1 (
Period SMALLINT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
Varor_period SMALLINT(4) UNSIGNED DEFAULT '0' NOT NULL

Writing Test Cases

10

);
CREATE TABLE t2 (Period SMALLINT);

INSERT INTO t1 VALUES (9410,9412);
INSERT INTO t2 VALUES (9410),(9411),(9412),(9413);

SELECT PERIOD FROM t1;
SELECT * FROM t1;
SELECT t1.* FROM t1;
SELECT * FROM t1 INNER JOIN t2 USING (Period);

DROP TABLE t1, t2;

If a test case creates other objects such as stored programs or user accounts, it should take care to also clean those up at the begin-
ning and end of the test.

4.5. Generating a Test Case Result File
The test code we just wrote contains no checks of the result. The test will report a failure for one of two reasons:

• An individual SQL statement fails with an error

• The overall test case result does not match what was expected

In the first case, mysqltest aborts with an error. The second case requires that we have a record of the expected result so that it
can be compared with the actual result. To generate a file that contains the test result, run the test with the --record option, like
this:

shell> cd mysql-test
shell> ./mysql-test-run.pl --record foo

Running the test as shown creates a result file named mysql-test/r/foo.result that has this content:

DROP TABLE IF EXISTS t1,t2;
CREATE TABLE t1 (
Period SMALLINT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
Varor_period SMALLINT(4) UNSIGNED DEFAULT '0' NOT NULL
);
CREATE TABLE t2 (Period SMALLINT);
INSERT INTO t1 VALUES (9410,9412);
INSERT INTO t2 VALUES (9410),(9411),(9412),(9413);
SELECT period FROM t1;
period
9410
SELECT * FROM t1;
Period Varor_period
9410 9412
SELECT t1.* FROM t1;
Period Varor_period
9410 9412
SELECT * FROM t1 INNER JOIN t2 USING (Period);
Period Varor_period
9410 9412
DROP TABLE t1, t2;
ok

If we look at this result file, it contains the statements in the foo.test file together with the output from the SELECT statements.
The output for each statement includes a row of column headings followed by data rows. Rows have columns separated by Tab
characters.

At this point, you should inspect the result file and determine whether its contents are as expected. If so, let it be part of your test
case. If the result is not as expected, you have found a problem, either with the server or the test. Determine the cause of the prob-
lem and fix it. For example, the test might produce output that varies from run to run. To deal with this, you can postprocess the
output before the comparison occurs. See Section 4.8, “Dealing with Output That Varies Per Test Run”.

4.6. Checking for Expected Errors
A good test suite checks not only that operations succeed as they ought, but also that they fail as they ought. For example, if a state-
ment is illegal, the server should reject it with an error message. The test suite should verify that the statement fails and that it fails
with the proper error message.

The test engine enables you to specify “expected failures.” Let's say that after we create t1, we try to create it again without drop-
ping it first:

--disable_warnings
DROP TABLE IF EXISTS t1,t2;

Writing Test Cases

11

--enable_warnings
CREATE TABLE t1 (
Period SMALLINT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
Varor_period SMALLINT(4) UNSIGNED DEFAULT '0' NOT NULL

);
CREATE TABLE t2 (Period SMALLINT);

INSERT INTO t1 VALUES (9410,9412);
INSERT INTO t2 VALUES (9410),(9411),(9412),(9413);

SELECT period FROM t1;
SELECT * FROM t1;
SELECT t1.* FROM t1;
SELECT * FROM t1 INNER JOIN t2 USING (Period);

CREATE TABLE t1 (something SMALLINT(4));

The result is failure and an error:

At line 21: query 'CREATE TABLE t1 (something SMALLINT(4))'
failed: 1050: Table 't1' already exists

To handle this error and indicate that indeed we do expect it to occur, we can put an error command before the second create
table statement. Either of the following commands test for this particular MySQL error:

--error 1050
--error ER_TABLE_EXISTS_ERROR

1050 is the numeric error code and ER_TABLE_EXISTS_ERROR is the symbolic name. Symbolic names are more stable than er-
ror numbers because the numbers sometimes change, particularly for those created during recent development. For such errors, use
of numbers rather than the names in a test case will require test to be revised should the numbers change.

After we make a change to add an error command before the CREATE TABLE statement and run the test again, the end of the
result will look like this:

CREATE TABLE t1 (something SMALLINT(4));
ERROR 42S01: Table 't1' already exists

In this case, the result shows the statement that causes the error, together with the resulting error message. The fact that
mysqltest does not terminate and that the error message becomes part of the result indicates that the error was expected.

You can also test for errors by specifying an SQLSTATE value. For MySQL error number 1050, the corresponding SQLSTATE
value is 42S01. To specify an SQLSTATE value in an error command, use an S prefix:

--error S42S01

A disadvantage of SQLSTATE values is that sometimes they correspond to more than one MySQL error code. Using the SQL-
STATE value in this case might not be specific enough (it could let through an error that you do not actually expect).

If you want to test for multiple errors, the error command allows multiple arguments, separated by commas. For example:

--error ER_NO_SUCH_TABLE,ER_KEY_NOT_FOUND

For a list of MySQL error codes, symbolic names, and SQLSTATE values, see ht-
tp://dev.mysql.com/doc/mysql/en/error-messages-server. You can also examine the mysqld_error.h and sql_state.h files
in the include directory of a MySQL source distribution.

4.7. Controlling the Information Produced by a Test Case
By default, the mysqltest test engine produces output only from select, show, and other SQL statements that you expect to
produce output (that is, statements that create a result set). It also produces output from certain commands such as echo and exec.
mysqltest can be instructed to be more or less verbose.

Suppose that we want to include in the result the number of rows affected by or returned by SQL statements. To do this, add the
following line to the test case file preceding the first table-creation statement:

--enable_info

After rerunning the test by invoking mysql-test-run.pl with the --record option to record the new result, the result file
will contain more information:

DROP TABLE IF EXISTS t1,t2;
CREATE TABLE t1 (

Writing Test Cases

12

http://dev.mysql.com/doc/mysql/en/error-messages-server
http://dev.mysql.com/doc/mysql/en/error-messages-server

Period SMALLINT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
Varor_period SMALLINT(4) UNSIGNED DEFAULT '0' NOT NULL
);
affected rows: 0
CREATE TABLE t2 (Period SMALLINT);
affected rows: 0
INSERT INTO t1 VALUES (9410,9412);
affected rows: 1
INSERT INTO t2 VALUES (9410),(9411),(9412),(9413);
affected rows: 4
info: Records: 4 Duplicates: 0 Warnings: 0
SELECT period FROM t1;
period
9410
affected rows: 1
SELECT * FROM t1;
Period Varor_period
9410 9412
affected rows: 1
SELECT t1.* FROM t1;
Period Varor_period
9410 9412
affected rows: 1
SELECT * FROM t1 INNER JOIN t2 USING (Period);
Period Varor_period
9410 9412
affected rows: 1
DROP TABLE t1, t2;
affected rows: 0
ok

To turn off the affected-rows reporting, add this command to the test case file:

--disable_info

In general, options can be enabled and disabled for different parts of the test file. Suppose that we are interested in the internals of
the database as well. We could enable the display of query metadata using enable_metadata. With this option enabled, the test
output is a bit verbose. However, as mentioned earlier, the option can be enabled and disabled selectively so that it is enabled only
for those parts of the test case where it interests you to know more.

If you perform an operation for which you have no interest in seeing the statements logged to the result, you can disable statement
logging. For example, you might be initializing a table where you don't really expect a failure, and you are not interested in seeing
the initialization statements in the test result. You can use the disable_query_log command to temporarily disable recording
of input SQL statements, and enable recording again with enable_query_log. You can disable the recording of the output
from executing commands using disable_result_log and enable recording again with enable_result_log.

4.8. Dealing with Output That Varies Per Test Run
It is best to write each test case so that the result it produces does not vary for each test run, or according to factors such as the time
of day, differences in how program binaries are compiled, the operating system, and so forth. For example, if the result contains the
current date and time, the test engine has no way to verify that the result is correct.

However, sometimes a test result is inherently variable according to external factors, or perhaps there is a part of a result that you
simply do not care about. mysqltest provides commands that enable you to postprocess test output into a more standard format
so that output variation across test runs will not trigger a result mismatch.

One such command is replace_column, which specifies that you want to replace whatever is in a given column with a string.
This makes the output for that column the same for each test run.

To see how this command works, add the following row after the first insert in the test case:

INSERT INTO t1 VALUES (DATE_FORMAT(NOW(), '%s'),9999);

Then record the test result and run the test again:

shell> ./mysql-test-run.pl --record foo
shell> ./mysql-test-run.pl foo

Most likely, a failure will occur and mysql-test-run.pl will display the difference between the expected result and what we
actually got, like this:

Below are the diffs between actual and expected results:

*** r/foo.result Thu Jan 20 18:38:37 2005
--- r/foo.reject Thu Jan 20 18:39:00 2005
*** 16,32 ****
SELECT period FROM t1;
period

Writing Test Cases

13

9410
! 0034
affected rows: 2
SELECT * FROM t1;
Period Varor_period
9410 9412

! 0034 9999
affected rows: 2
SELECT t1.* FROM t1;
Period Varor_period
9410 9412

! 0034 9999
affected rows: 2
SELECT * FROM t1 INNER JOIN t2 USING (Period);
Period Varor_period

--- 16,32 ----
SELECT period FROM t1;
period
9410

! 0038
affected rows: 2
SELECT * FROM t1;
Period Varor_period
9410 9412

! 0038 9999
affected rows: 2
SELECT t1.* FROM t1;
Period Varor_period
9410 9412

! 0038 9999
affected rows: 2
SELECT * FROM t1 INNER JOIN t2 USING (Period);
Period Varor_period

If we are not really interested in the first column, one way to eliminate this mismatch is by using the replace_column com-
mand. The duration of the effect of this command is the next SQL statement, so we need one before each select statement:

--replace_column 1 SECONDS
SELECT period FROM t1;
--replace_column 1 SECONDS
SELECT * FROM t1;
--replace_column 1 SECONDS
SELECT t1.* FROM t1;

In the replace_column commands, SECONDS could be any string. Its only purpose is to map variable output onto a constant
value. If we record the test result again, we will succeed each time we run the test after that. The result file will look like this:

DROP TABLE IF EXISTS t1,t2;
CREATE TABLE t1 (
Period SMALLINT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
Varor_period SMALLINT(4) UNSIGNED DEFAULT '0' NOT NULL
);
affected rows: 0
CREATE TABLE t2 (Period SMALLINT);
affected rows: 0
INSERT INTO t1 VALUES (9410,9412);
affected rows: 1
INSERT INTO t1 VALUES (DATE_FORMAT(NOW(), '%s'),9999);
affected rows: 1
INSERT INTO t2 VALUES (9410),(9411),(9412),(9413);
affected rows: 4
info: Records: 4 Duplicates: 0 Warnings: 0
SELECT period FROM t1;
period
SECONDS
SECONDS
affected rows: 2
SELECT * FROM t1;
Period Varor_period
SECONDS 9412
SECONDS 9999
affected rows: 2
SELECT t1.* FROM t1;
Period Varor_period
SECONDS 9412
SECONDS 9999
affected rows: 2
SELECT * FROM t1 INNER JOIN t2 USING (Period);
Period Varor_period
9410 9412
affected rows: 1
DROP TABLE t1, t2;
affected rows: 0
ok

4.9. Passing Options from mysql-test-run.pl to mysqld or

Writing Test Cases

14

mysqltest
mysql-test-run.pl supports several options that enable you to pass options to other programs. Each of these options takes a
value consisting of one or more comma-separated options:

• The --mysqld option tells mysql-test-run.pl to start the mysqld server with the named options. The following com-
mand causes --skip-innodb and --key_buffer_size=16384 to be passed to mysqld:

shell> mysql-test-run.pl --mysqld=--skip-innodb,--key_buffer_size=16384

• The --combination option is similar to --mysqld, but should be specified two or more times. mysql-test-run.pl
executes multiple test runs, using the options for each instance of --combination in successive runs. The following com-
mand passes --skip-innodb to mysqld for the first test run, and --innodb and --innodb-file-per-table for
the second test run:

shell> mysql-test-run.pl
--combination=--skip-innodb
--combination=--innodb,--innodb-file-per-table

If --combination is given only once, it has no effect.

For test runs specific to a given test suite, an alternative to the use of the --combination option is to create a combina-
tions file in the suite directory. The file should contain a section of options for each test run. For an example, see Sec-
tion 4.12.1, “Controlling the Binary Log Format Used for an Entire Test Run”.

The --combination option and combinations file can be used as of MySQL 5.1.23/6.0.4.

• The --mysqltest option tells mysql-test-run.pl to start mysqltest with the named options. The following com-
mand passes --quiet, --sleep=5, and --mark-progress to mysqltest:

shell> mysql-test-run.pl --mysqltest=--quiet,--sleep=5,--mark-progress

The --mysqltest option can be used as of MySQL 6.0.6.

4.10. Specifying Test Case-Specific Server Options
Within a test case, many system variables can be set by using statements such as these:

SET sql_warnings=1;
SET sql_mode='NO_AUTO_VALUE_ON_ZERO';

But sometimes you need to restart the server to use command-line options that are specific to a given test case. You can specify
these options in a file named mysql-test/t/test_name-master.opt. When a file named t/test_name-
master.opt exists, mysql-test-run.pl examines it for extra options that the server needs to be run with when executing
the test_name test case. If no server has yet been started or the current server is running with different options, mysql-
test-run.pl restarts the server with the new options.

Files in the mysql-test/t directory with names ending in -slave.opt and -im.opt are similar, but they are used for slave
servers and the Instance Manager, respectively.

4.11. Using Include Files to Simplify Test Cases
The include directory contains many files intended for inclusion into test case files. For example, if a test case needs to verify
that the server supports the CSV storage engine, use this line in the test case file:

--source include/have_csv.inc

These include files serve many purposes, but in general, they encapsulate operations of varying complexity into single files so that
you can perform each operation in a single step. Include files are available for operations such as these:

• Ensure that a given feature is available. The file checks to make sure that the feature is available and exits if not.

• Storage engine tests: These files have names of the form have_engine_name.inc, such as have_innodb.inc or
have_falcon.inc. The MyISAM, MERGE, and MEMORY storage engines are always supported and need not be checked.

Writing Test Cases

15

• Character set tests: These files have names of the form have_charset_name.inc, such as have_utf8.inc or
have_cp1251.inc.

• Debugging capabilities: Include the have_debug.inc file if a test requires that the server was built for debugging (that
is, that the MySQL distribution was configured with the --with-debug option).

• Wait for a condition to become true. Set the $wait_condition variable to a SQL statement that selects a value and then in-
clude the wait_condition.inc file. The include file executes the statement in a loop with a 0.1 second sleep between exe-
cutions until the select value is nonzero. For example:

let $wait_condition= SELECT c = 3 FROM t;
--source include/wait_condition.inc

• Control the binary log format. See Section 4.12, “Controlling the Binary Log Format Used for Tests”.

• Control replication slave servers. See Section 4.13, “Writing Replication Tests”.

You can think of an include file as a rudimentary form of subroutine that is “called” at the point of inclusion. You can “pass para-
meters” by setting variables before including the file and referring to them within the file. You can “return” values by setting vari-
ables within the file and referring them following inclusion of the file.

4.12. Controlling the Binary Log Format Used for Tests
Before MySQL 5.1, the server does all binary logging using statement-based logging (SBL), which logs events as statements that
produce data changes. As of MySQL 5.1, the server also supports row-based logging (RBL), which logs events as changes to indi-
vidual rows. It also supports mixed logging, which switches between SBL and RBL automatically as necessary.

The server's global binlog_format system variable indicates which log format is in effect. It has possible values of STATE-
MENT, ROW, and MIXED (not case sensitive). This system variable can be set at server startup by specifying -
-binlog_format=value on the command line or in an option file. A user who has the SUPER privilege can change the log
format at runtime. For example:

SET GLOBAL binlog_format = STATEMENT;

Some tests require of a particular binary log format. You can exercise control over the binary log format in two ways:

• To control the log format that the server uses for an entire test run, you can pass options to mysql-test-run.pl that tell it
which format mysqld should use.

• To verify that a particular log format is in effect for a specific test case, you can use an appropriate include file that checks the
current format and exits if the format is other than what is required.

The following sections describe how to use these techniques.

4.12.1. Controlling the Binary Log Format Used for an Entire Test Run
To specify the binary log format for a test run, you can use the --mysqld or --combination option to tell mysql-
test-run.pl to pass a logging option to mysqld. For example, the following command runs the tests from the rpl suite that
have names that begin with rpl_row. The tests are run once with the binary log format set to STATEMENT:

shell> mysql-test-run.pl --suite=rpl --do-test=rpl_row
--mysqld=--binlog_format=statement

To run tests under multiple log formats, use two or more instances of the --combination option. The following command runs
the same tests as the preceding command, but runs them once with the binary log format set to ROW and a second time with the
format set to MIXED:

shell> mysql-test-run.pl --suite=rpl --do-test=rpl_row
--combination=--binlog_format=row
--combination=--binlog_format=mixed

The --combination option must be given at least two times or it has no effect.

As an alternative to using the --combination option, you can create a file named combinations in the test suite directory
and list the options that you would specify via --combination, one line per option. For the preceding mysql-test-run.pl

Writing Test Cases

16

command, the suite name is rpl, so you would create a file named suite/rpt/combinations with these contents:

[row]
--binlog_format=row

[mixed]
--binlog_format=mixed

Then invoke mysql-test-run.pl like this:

shell> mysql-test-run.pl --suite=rpl --do-test=row

The format of the combinations file is similar to that of my.cnf files (section names followed by options for each section),
but options listed in the combinations file should include the leading dashes. (Options in my.cnf files are given without the
leading dashes.) mysql-test-run.pl displays the section name following the test name when it reports the test result.

Any --combination options specified on the command line override those found in a combinations file.

The --combination option and the combinations file have different scope. The --combination option applies globally
to all tests run by a given invocation of mysql-test-run.pl. The combinations file is placed in a test suite directory and
applies only to tests in that suite.

4.12.2. Specifying the Required Binary Log Format for Individual Test Cases
To specify within a test case that a particular binary log format is required, include one of the following lines to indicate the format:

--source include/have_binlog_format_row.inc
--source include/have_binlog_format_statement.inc
--source include/have_binlog_format_mixed.inc

The following files can be used for tests that support two binary log formats:

--source include/have_binlog_format_mixed_or_row.inc
--source include/have_binlog_format_mixed_or_statement.inc
--source include/have_binlog_format_row_or_statement.inc

Before mysql-test-run.pl runs the test case, it checks whether the value that it is using for the binlog_format system
variable matches what the test requires, based on whether the test refers to one of the preceding include files. If binlog_format
does not have an appropriate value, mysql-test-run.pl skips the test.

If a test supports all binary log formats, none of the have_binlog_format_*.inc include files should be used in the test file.
A test that includes no such file is assumed to support all formats.

4.13. Writing Replication Tests
If you are writing a replication test case, the test case file should begin with this command:

--source include/master-slave.inc

To switch between the master and slave, use these commands:

connection master;
connection slave;

If you need to do something on an alternative connection, you can use connection master1; for the master and connec-
tion slave1; for the slave.

To run the master with additional options for your test case, put them in command-line format in t/test_name-master.opt.
When a file named t/test_name-master.opt exists, mysql-test-run.pl examines it for extra options that the server
needs to be run with when executing the test_name test case. If no server has yet been started or the current server is running
with different options, mysql-test-run.pl restarts the server with the new options.

For the slave, similar principles apply, but you should list additional options in t/test_name-slave.opt.

Several include files are available for use in tests that enable better control over the behavior of slave server I/O and SQL threads.
The files are located in the include directory and have names of the form wait_for_slave_*.inc. By using these files,
you can help make replication tests more stable because it will be more likely that test failures are due to replication failures, not
due to problems with the tests themselves.

The slave-control include files address the issue that it is not always sufficient to use a START SLAVE or STOP SLAVE statement

Writing Test Cases

17

by itself: When the statement returns, the slave may not have reached the desired operational state. For example, with START
SLAVE, the following considerations apply:

• It is not necessary to wait for the SQL thread after START SLAVE or START SLAVE SQL_THREAD because the thread will
have started by the time statement returns.

• By contrast, it is necessary to wait for the I/O thread after START SLAVE or START SLAVE IO_THREAD because although
the thread will have started when the statement returns, it may not yet have established the connection to the master.

To verify that a slave has reached the desired state, combine the use of START SLAVE or STOP SLAVE with an appropriate
“wait” include file. The file contains code that waits until the state has been reached or a timeout occurs. For example, to verify that
both slave threads have started, do this:

START SLAVE;
--source include/wait_for_slave_to_start.inc

Similarly, to stop both slave threads, do this:

STOP SLAVE;
--source include/wait_for_slave_to_stop.inc

The following list describes the include files that are available for slave control:

• wait_for_slave_to_start.inc (available as of 5.0.44, 5.1.20, 6.0.3)

Waits for both slave threads (I/O and SQL) to start. Should be preceded by a START SLAVE statement.

• wait_for_slave_to_stop.inc (available as of 5.0.44, 5.1.20, 6.0.3)

Waits for both slave threads (I/O and SQL) to stop. Should be preceded by a STOP SLAVE statement.

• wait_for_slave_sql_to_stop.inc (available as of 5.0.44, 5.1.20, 6.0.3)

Waits for the slave SQL thread to stop. Should be preceded by a STOP SLAVE SQL_THREAD statement.

• wait_for_slave_io_to_stop.inc (availaable as of 5.0.44, 5.1.20, 6.0.3)

Waits for the slave I/O thread to stop. Should be preceded by a STOP SLAVE IO_THREAD statement.

• wait_for_slave_param.inc (available as of 5.0.46, 5.1.20, 6.0.3)

Waits until SHOW SLAVE STATUS output contains a given value or a timeout occurs. Before including the file, you should
set the $slave_param variable to the column name to look for in SHOW SLAVE STATUS output, and
$slave_param_value to the value that you are waiting for the column to have.

Example:

let $slave_param= Slave_SQL_Running;
let $slave_param_value= No;
--source include/slave_wait_slave_param.inc

• wait_for_slave_sql_error.inc (available as of 5.1.23, 6.0.4)

Waits until the SQL thread for the current connection has gotten an error or a timeout occurs. Occurrence of an error is determ-
ined by waiting for the Last_SQL_Errno column of SHOW SLAVE STATUS output to have a nonzero value.

4.14. Thread Synchronization in Test Cases
The Debug Sync facility allows placement of synchronization points in the code. They can be activated by statements that set the
debug_sync system variable. An active synchronization point can emit a signal and/or wait for a signal to be emitted by another
thread. This waiting times out after 300 seconds by default. The --debug-sync-timeout=N option for mysql-
test-run.pl changes that timeout to N seconds. A timeout of zero disables the facility altogether, so that synchronization points
will not emit or wait for signals, even if activated.

The purpose of the timeout is to avoid a complete lockup in test cases. If for some reason the expected signal is not emitted by any
thread, the execution of the affected statement will not block forever. A warning shows up when the timeout happens. That makes a
difference in the test result so that it will not go undetected.

Writing Test Cases

18

For test cases that require the Debug Sync facility, include the following line in the test case file:

--source include/have_debug_sync.inc

For a description of the Debug Sync facility and how to use synchronization points, see MySQL Internals: Test Synchronization.

4.15. Other Tips for Writing Test Cases

• Writing loops

If you need to do something in a loop, you can use something like this:

let $1= 1000;
while ($1)
{
execute your statements here
dec $1;
}

• Pausing between statements

To sleep between statements, use the sleep command. It supports fractions of a second. For example, sleep 1.3; sleeps
1.3 seconds.

Try not to use sleep or real_sleep commands more than necessary. The more of them there are, the slower the test suite
becomes. In some cases, heavy reliance on sleep operations is an indicator that the logic of a test should be reconsidered.

• Commenting the test result

When the output in a result file is not understandable by inspection, it can be helpful to have the test case write comments to the
result file that provide context. You can use the echo command for this:

--echo # Comment to explain the following output

• Sorting result sets

If a test case depends on SELECT output being in a particular row order, use an ORDER BY clause. Do not assume that rows
will be selected in the same order they are inserted, particularly for tests that might be run multiple times under conditions that
can change the order, such as with different storage engines, or with and without indexing.

• Performing file system operations

Avoid using exec or system to execute operating system commands for file system operations. This used to be very com-
mon, but OS commands tend to be platform specific, which reduces test portability. mysqltest now has several commands
to perform these operations portably, so these commands should be used instead: remove_file, chmod_file, mkdir, and
so forth.

• Local versus remote storage

Some test cases depend on being run on local storage, and may fail when run on remote storage such as a network share. For
example, if the test result can be affected by differences between local and remote file system times, the expected result might
not be obtained. Failure of these test cases under such circumstances does not indicate an actual malfunction. It is not generally
possible to determine whether tests are being run on local storage.

Writing Test Cases

19

http://forge.mysql.com/wiki/MySQL_Internals_Test_Synchronization

Chapter 5. MySQL Test Programs
This chapter describes the test programs that run test cases. For information about the language used for writing test cases, see
Chapter 6, mysqltest Language Reference.

The test suite uses the following programs:

• The mysql-test-run.pl Perl script is the main application used to run the MySQL test suite. It invokes mysqltest to
run individual test cases. (Prior to MySQL 4.1, a similar shell script, mysql-test-run, can be used instead.)

• mysqltest runs test cases. A version named mysqltest_embedded is similar but is built with support for the
libmysqld embedded server.

• The mysql_client_test program is used for testing aspects of the MySQL client API that cannot be tested using
mysqltest and its test language. mysql_client_test_embedded is similar but used for testing the embedded server.

• The mysql-stress-test.pl Perl script performs stress-testing of the MySQL server. (MySQL 5.0 and up only)

5.1. mysqltest — Program to Run Test Cases
The mysqltest program runs a test case against a MySQL server and optionally compares the output with a result file. This pro-
gram reads input written in a special test language. Typically, you invoke mysqltest via mysql-test-run.pl rather than
invoking it directly.

mysqltest_embedded is similar but is built with support for the libmysqld embedded server.

Features of mysqltest:

• Can send SQL statements to MySQL servers for execution

• Can execute external shell commands

• Can test whether the result from an SQL statement or shell command is as expected

• Can connect to one or more standalone mysqld servers and switch between connections

• Can connect to an embedded server (libmysqld), if MySQL is compiled with support for libmysqld. (In this case, the ex-
ecutable is named mysqltest_embedded rather than mysqltest.)

By default, mysqltest reads the test case on the standard input. To run mysqltest this way, you normally invoke it like this:

shell> mysqltest [options] [db_name] < test_file

You can also name the test case file with a --test-file=file_name option.

The exit value from mysqltest is 0 for success, 1 for failure, and 62 if it skips the test case (for example, if after checking some
preconditions it decides not to run the test).

mysqltest supports the following options:

• --help, -?

Display a help message and exit.

• --basedir=dir_name, -b dir_name

The base directory for tests.

• --big-test, -B

Define the mysqltest variable $BIG_TEST as 1. This option was removed in MySQL 4.1.23, 5.0.30, and 5.1.13.

• --character-sets-dir=path

The directory where character sets are installed. This option was added in MySQL 4.1.23, 5.0.32, and 5.1.13.

20

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --cursor-protocol

Use cursors for prepared statements (implies --ps-protocol). This option was added in MySQL 5.0.19.

• --database=db_name, -D db_name

The default database to use.

• --debug[=debug_options], -#[debug_options]

Write a debugging log if MySQL is built with debugging support. The default debug_options value is
'd:t:S:i:O,/tmp/mysqltest.trace'.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL
5.1.14.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --include=file_name, -i file_name

Include the contents of the given file before processing the contents of the test file. The included file should have the same
format as other mysqltest test files. This option has the same effect as putting a --source file_name command as the
first line of the test file. This option was added in MySQL 4.1.23, 5.0.30, and 5.1.7.

• --logdir=dir_name

The directory to use for log files. This option was added in MySQL 5.1.14.

• --mark-progress

Write the line number and elapsed time to test_file.progress. This option was added in MySQL 4.1.23, 5.0.30, and
5.1.12.

• --max-connect-retries=num

The maximum number of connection attempts when connecting to server. This option was added in MySQL 4.1.23, 5.0.23, and
5.1.11.

• --no-defaults

Do not read default options from any option files.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the
option and the password. If you omit the password value following the --password or -p option on the command line,
you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --ps-protocol

Use the prepared-statement protocol for communication.

• --quiet

Suppress all normal output. This is a synonym for --silent.

MySQL Test Programs

21

• --record, -r

Record the output that results from running the test file into the file named by the --result-file option, if that option is
given.

• --result-file=file_name, -R file_name

This option specifies the file for test case expected results. --result-file, together with --record, determines how
mysqltest treats the test actual and expected results for a test case:

• If the test produces no results, mysqltest exits with an error message to that effect.

• Otherwise, if --result-file is not given, mysqltest sends test results to the standard output.

• With --result-file but not --record, mysqltest reads the expected results from the given file and compares
them with the actual results. If the results do not match, mysqltest writes a .reject file in the same directory as the
result file and exits with an error.

• With both --result-file and --record, mysqltest updates the given file by writing the actual test results to it.

• --server-arg=value, -A value

Pass the argument as an argument to the embedded server. For example, --server-arg=--tmpdir=/tmp or -
-server-arg=--core. Up to 64 arguments can be given.

• --server-file=file_name, -F file_name

Read arguments for the embedded server from the given file. The file should contain one argument per line.

• --silent, -s

Suppress all normal output.

• --skip-safemalloc

Do not use memory allocation checking.

• --sleep=num, -T num

Cause all sleep commands in the test case file to sleep num seconds. This option does not affect real_sleep commands.

As of MySQL 5.0.23, an option value of 0 can be used, which effectively disables sleep commands in the test case.

• --socket=path, -S path

The socket file to use when connecting to localhost (which is the default host).

• --sp-protocol

Execute DML statements within a stored procedure. For every DML statement, mysqltest creates and invokes a stored pro-
cedure that executes the statement rather than executing the statement directly. This option was added in MySQL 5.0.19.

• --test-file=file_name, -x file_name

Read test input from this file. The default is to read from the standard input.

• --timer-file=file_name, -m file_name

The file where the timing in microseconds is written.

• --tmpdir=dir_name, -t dir_name

The temporary directory where socket files are put.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print out more information what the program does.

MySQL Test Programs

22

• --version, -V

Display version information and exit.

• --view-protocol

Every SELECT statement is wrapped inside a view. This option was added in MySQL 5.0.19.

5.2. mysql_client_test — Test Client API
The mysql_client_test program is used for testing aspects of the MySQL client API that cannot be tested using
mysqltest and its test language. mysql_client_test_embedded is similar but used for testing the embedded server. Both
programs are run as part of the test suite.

The source code for the programs can be found in in test/mysql_client_test.c in a source distribution. The program
serves as a good source of examples illustrating how to use various features of the client API.

mysql_client_test supports the following options:

• --help, -?

Display a help message and exit.

• -b dir_name, --basedir=dir_name

The base directory for the tests.

• -t count, --count=count

The number of times to execute the tests.

• --database=db_name, -D db_name

The database to use.

• --debug[=debug_options], -#[debug_options]

Write a debugging log if MySQL is built with debugging support. The default debug_options value is
'd:t:o,/tmp/mysql_client_test.trace'.

• -g option, --getopt-ll-test=option

Option to use for testing bugs in the getopt library.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the
option and the password. If you omit the password value following the --password or -p option on the command line,
you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• -A arg, --server-arg=arg

Argument to send to the embedded server.

• -T, --show-tests

Show all test names.

• --silent, -s

Be more silent.

MySQL Test Programs

23

• --socket=path, -S path

The socket file to use when connecting to localhost (which is the default host).

• -c, --testcase

The option may disable some code when run as a mysql-test-run.pl test case.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• -v dir_name, --vardir=dir_name

The data directory for tests. The default is mysql-test/var.

5.3. mysql-test-run.pl — Run MySQL Test Suite
The mysql-test-run.pl Perl script is the main application used to run the MySQL test suite. It invokes mysqltest to run
individual test cases. (Prior to MySQL 4.1, a similar shell script, mysql-test-run, can be used instead.)

Invoke mysql-test-run.pl in the mysql-test directory like this:

shell> mysql-test-run.pl [options] [test_name] ...

Each test_name argument names a test case. The test case file that corresponds to the test name is t/test_name.test.

For each test_name argument, mysql-test-run.pl runs the named test case. With no test_name arguments, mysql-
test-run.pl runs all .test files in the t subdirectory.

If no suffix is given for the test name, a suffix of .test is assumed. Any leading path name is ignored. These commands are equi-
valent:

shell> mysql-test-run.pl mytest
shell> mysql-test-run.pl mytest.test
shell> mysql-test-run.pl t/mytest.test

As of MySQL 5.1.23, a suite name can be given as part of the test name. That is, the syntax for naming a test is:

[suite_name.]test_name[.suffix]

If a suite name is given, mysql-test-run.pl looks in that suite for the test. With no suite name, mysql-test-run.pl
looks in the default list of suites for a match and runs the test in any suites where it finds the test. Suppose that the default suite list
is main, binlog, rpl, and that a test mytest.test exists in the main and rpl suites. With an argument of mytest or
mytest.test, mysql-test-run.pl will run mytest.test from the main and rpl suites.

To run a family of test cases for which the names share a common prefix, use the --do-test=prefix option. For example, -
-do-test=rpl runs the replication tests (test cases that have names beginning with rpl). --skip-test has the opposite ef-
fect of skipping test cases for which the names share a common prefix.

As of MySQL 5.0.54/5.1.23/6.0.5, the argument for the --do-test and --skip-test options allows more flexible specifica-
tion of which tests to perform or skip. If the argument contains a pattern metacharacter other than a lone period, it is interpreted as a
Perl regular expression and applies to test names that match the pattern. If the argument contains a lone period or does not contain
any pattern metacharacters, it is interpreted the same way as previously and matches test names that begin with the argument value.
For example, --do-test=testa matches tests that begin with testa, --do-test=main.testa matches tests in the main
test suite that begin with testa, and --do-test=main.*testa matches test names that contain main followed by testa
with anything in between. In the latter case, the pattern match is not anchored to the beginning of the test name, so it also matches
names such as xmainytestz.

To perform setup prior to running tests, mysql-test-run.pl needs to invoke mysqld with the --bootstrap and -
-skip-grant-tables options (see Typical configure Options). If MySQL was configured with the -
-disable-grant-options option, --bootstrap, --skip-grant-tables, and --init-file will be disabled. To
handle this, set the MYSQLD_BOOTSTRAP environment variable to the full path name of a server that has all options enabled.
mysql-test-run.pl will use that server to perform setup; it is not used to run the tests.

The init_file test will fail if --init-file is disabled. This is an expected failure that can be handled as follows:

shell> export MYSQLD_BOOTSTRAP
shell> MYSQLD_BOOTSTRAP=/full/path/to/mysqld

MySQL Test Programs

24

http://dev.mysql.com/doc/refman/5.1/en/configure-options.html

shell> make test force="--skip-test=init_file"

To run mysql-test-run.pl on Windows, you'll need either Cygwin or ActiveState Perl to run it. You may also need to install
the modules required by the script. To run the test script, change location into the mysql-test directory, set the
MTR_VS_CONFIG environment variable to the configuration you selected earlier (or use the --vs-config option), and invoke
mysql-test-run.pl. For example (using Cygwin and the bash shell):

shell> cd mysql-test
shell> export MTS_VS_CONFIG=debug
shell> ./mysqltest-run.pl --force --timer
shell> ./mysqltest-run.pl --force --timer --ps-protocol

If you have a copy of mysqld running on the machine where you want to run the test suite, you do not have to stop it, as long as it
is not using ports 9306 or 9307. If either of those ports is taken, you should set the MTR_BUILD_THREAD environment variable
to an appropriate value, and the test suite will use a different set of ports for master, slave, NDB, and Instance Manager). For ex-
ample:

shell> export MTR_BUILD_THREAD=31
shell> ./mysql-test-run.pl [options] [test_name]

mysql-test-run.pl defines several environment variables. Some of them are listed in the following table.

Variable Meaning

MYSQL_TEST Path name to mysqltest binary

MYSQLTEST_VARDIR Path name to the var directory that is used for logs, temporary files, and so forth

MYSQLD_BOOTSTRAP Full path name to mysqld that has all options enabled

MASTER_MYPORT ???

MASTER_MYSOCK ???

Tests sometimes rely on certain environment variables being defined. For example, certain tests assume that MYSQL_TEST is
defined so that mysqltest can invoke itself with exec $MYSQL_TEST.

mysql-test-run.pl supports the options in the following list. An argument of -- tells mysql-test-run.pl not to pro-
cess any following arguments as options. (A description of differences between the options supported by mysql-test-run.pl
and mysql-test-run appears following the list.)

• --help, -h

Display a help message and exit.

• --bench

Run the benchmark suite.

• --benchdir=path

The directory where the benchmark suite is located. The default path is ../../mysql-bench.

• --big-test

Pass the --big-test option to mysqltest.

• --check-testcases

Check test cases for side effects.

• --client-bindir

The path to the directory where client binaries are located. This option was added in MySQL 5.0.66/5.1.27.

• --client-ddd

Start mysqltest in the ddd debugger.

• --client-debugger

Start mysqltest in the named debugger.

MySQL Test Programs

25

• --client-gdb

Start mysqltest in the gdb debugger.

• --client-libdir

The path to the directory where client libraries are located. This option was added in MySQL 5.0.66/5.1.27.

• --combination=value

Extra options to pass to mysqld. The value should consist of one or more comma-separated mysqld options. This option is
similar to --mysqld but should be given two or more times. mysql-test-run.pl executes multiple test runs, using the
options for each instance of --combination in successive runs. If --combination is given only once, it has no effect.
For test runs specific to a given test suite, an alternative to the use of --combination is to create a combinations file in
the suite directory. The file should contain a section of options for each test run. See Section 4.9, “Passing Options from
mysql-test-run.pl to mysqld or mysqltest”.

This option was added in MySQL 5.1.23/6.0.4.

• --comment=str

Write str to the output.

• --compress

Compress all information sent between the client and the server if both support compression.

• --cursor-protocol

Pass the --cursor-protocol option to mysqltest (implies --ps-protocol).

• --ddd

Start mysqld in the ddd debugger.

• --debug

Dump trace output for all clients and servers.

• --debugger

Start mysqld using the named debugger.

• --debug-sync-timeout=N

Controls whether the Debug Sync facility for testing and debugging is enabled. The option value is a timeout in seconds. The
default value is 300. A value of 0 disables Debug Sync. The value of this option also becomes the default timeout for individual
synchronization points.

mysql-test-run.pl passes --loose-debug-sync-timeout=N to mysqld. The --loose prefix is used so that
mysqld does not fail if Debug Sync is not compiled in.

For information about using the Debug Sync facility for testing, see Section 4.14, “Thread Synchronization in Test Cases”.

This option was added in MySQL 6.0.6.

• --do-test=prefix

Run all test cases having a name that begins with the given prefix value. This option provides a convenient way to run a
family of similarly named tests.

As of MySQL 5.0.54/5.1.23/6.0.5, the argument for the --do-test option allows more flexible specification of which tests to
perform. If the argument contains a pattern metacharacter other than a lone period, it is interpreted as a Perl regular expression
and applies to test names that match the pattern. If the argument contains a lone period or does not contain any pattern
metacharacters, it is interpreted the same way as previously and matches test names that begin with the argument value. For ex-
ample, --do-test=testa matches tests that begin with testa, --do-test=main.testa matches tests in the main
test suite that begin with testa, and --do-test=main.*testa matches test names that contain main followed by
testa with anything in between. In the latter case, the pattern match is not anchored to the beginning of the test name, so it
also matches names such as xmainytestz.

• --embedded-server

MySQL Test Programs

26

Use a version of mysqltest built with the embedded server.

• --experimental=file_name

Specify a file that contains a list of test cases that should be displayed with the [exp-fail] code rather than [fail]
if they fail. This option was added in MySQL 5.1.33/6.0.11.

• --extern

Use an already running server.

Note: If a test case has an .opt file that requires the server to be restarted with specific options, the file will not be used. The
test case likely will fail as a result.

• --fast

Do not clean up from earlier test runs.

• --force

Normally, mysql-test-run.pl exits if a test case fails. --force causes execution to continue regardless of test case fail-
ure.

• --gcov

Run tests with the gcov test coverage tool.

• --gdb

Start mysqld in the gdb debugger.

• --gprof

Run tests with the gprof profiling tool.

• --im-mysqld1-port

TCP/IP port number to use for the first mysqld, controlled by Instance Manager.

• --im-mysqld2-port

TCP/IP port number to use for the second mysqld, controlled by Instance Manager.

• --im-port

TCP/IP port number to use for mysqld, controlled by Instance Manager.

• --log-warnings

Pass the --log-warnings option to mysqld.

• --manual-debug

Use a server that has already been started by the user in a debugger.

• --manual-gdb

Use a server that has already been started by the user in the gdb debugger.

• --master-binary=path

Specify the path of the mysqld binary to use for master servers.

• --master_port=port_num

Specify the TCP/IP port number for the first master server to use. Observe that the option name has an underscore and not a
dash.

• --mem

Run the test suite in memory, using tmpfs or ramdisk. This can decrease test times significantly. mysql-test-run.pl at-

MySQL Test Programs

27

tempts to find a suitable location using a built-in list of standard locations for tmpfs and puts the var directory there. This op-
tion also affects placement of temporary files, which are created in var/tmp.

The default list includes /dev/shm. You can also enable this option by setting the environment variable
MTR_MEM[=dir_name]. If dir_name is given, it is added to the beginning of the list of locations to search, so it takes pre-
cedence over any built-in locations.

This option was added in MySQL 4.1.22, 5.0.30, and 5.1.13.

• --mysqld=value

Extra options to pass to mysqld. The value should consist of one or more comma-separated mysqld options. See Section 4.9,
“Passing Options from mysql-test-run.pl to mysqld or mysqltest”.

• --mysqltest=value

Extra options to pass to mysqltest. The value should consist of one or more comma-separated mysqltest options. See
Section 4.9, “Passing Options from mysql-test-run.pl to mysqld or mysqltest”. This option was added in MySQL
6.0.6.

• --ndb-connectstring=str

Pass --ndb-connectstring=str to the master MySQL server. This option also prevents mysql-test-run.pl from
starting a cluster. It is assumed that there is already a cluster running to which the server can connect with the given connect-
string.

• --ndb-connectstring-slave=str

Pass --ndb-connectstring=str to slave MySQL servers. This option also prevents mysql-test-run.pl from start-
ing a cluster. It is assumed that there is already a cluster running to which the server can connect with the given connectstring.

• --ndb-extra-test

Unknown.

• --ndbcluster-port=port_num, --ndbcluster_port=port_num

Specify the TCP/IP port number that NDB Cluster should use.

• --ndbcluster-port-slave=port_num

Specify the TCP/IP port number that the slave NDB Cluster should use.

• --netware

Run mysqld with options needed on NetWare.

• --notimer

Cause mysqltest not to generate a timing file.

• --ps-protocol

Pass the --ps-protocol option to mysqltest.

• --record

Pass the --record option to mysqltest. This option requires a specific test case to be named on the command line.

• --reorder

Reorder tests to minimize the number of server restarts needed.

• --report-features

Display the output of SHOW ENGINES and SHOW VARIABLES. This can be used to verify that binaries are built with all re-
quired features.

This option was added in MySQL 4.1.23, 5.0.30, and 5.1.14.

• --script-debug

MySQL Test Programs

28

Enable debug output for mysql-test-run.pl itself.

• --skip-im

Do not start Instance Manager; skip Instance Manager test cases.

• --skip-master-binlog

Do not enable master server binary logging.

• --skip-ndbcluster, --skip-ndb

Do not start NDB Cluster; skip Cluster test cases.

• --skip-ndbcluster-slave, --skip-ndb-slave

Do not start an NDB Cluster slave.

• --skip-rpl

Skip replication test cases.

• --skip-slave-binlog

Do not enable master server binary logging.

• --skip-ssl

Do not start mysqld with support for SSL connections.

• --skip-test=regex

Specify a regular expression to be applied to test case names. Cases with names that match the expression are skipped. tests to
skip.

As of MySQL 5.0.54/5.1.23/6.0.5, the argument for the --skip-test option allows more flexible specification of which
tests to skip. If the argument contains a pattern metacharacter other than a lone period, it is interpreted as a Perl regular expres-
sion and applies to test names that match the pattern. See the description of the --do-test option for details.

• --skip-*

--skip-* options not otherwise recognized by mysql-test-run.pl are passed to the master server.

• --slave-binary=path

Specify the path of the mysqld binary to use for slave servers.

• --slave_port=port_num

Specify the TCP/IP port number for the first master server to use. Observe that the option name has an underscore and not a
dash.

• --sleep=N

Pass --sleep=N to mysqltest.

• --small-bench

Run the benchmarks with the --small-tests and --small-tables options.

• --socket=file_name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --sp-protocol

Pass the --sp-protocol option to mysqltest.

• --ssl

If mysql-test-run.pl is started with the --ssl option, it sets up a secure conection for all test cases. In this case, if

MySQL Test Programs

29

mysqld does not support SSL, mysql-test-run.pl exits with an error message: Couldn't find support for
SSL

• --start

Initialize and start servers with the startup settings for the first specified test case. For example:

shell> cd mysql-test
shell> ./mysql-test-run.pl --start alias &

This option was added in MySQL 5.1.32/6.0.11.

• --start-and-exit

Initialize and start servers with the startup settings for the specified test case or cases, if any, and then exit. You can use this op-
tion to start a server to which you can connect later. For example, after building a source distribution you can start a server and
connect to it with the mysql client like this:

shell> cd mysql-test
shell> ./mysql-test-run.pl --start-and-exit
shell> ../mysql -S ./var/tmp/master.sock -h localhost -u root

• --start-dirty

Start servers (without initialization) for the specified test case or cases, if any, and then exit. You can then manually run the test
cases.

• --start-from=test_name

mysql-test-run.pl sorts the list of names of the test cases to be run, and then begins with test_name.

• --strace-client

Create strace output for mysqltest.

• --stress

Run the stress test. The other --stress-xxx options apply in this case.

• --stress-init-file=file_name

file_name is the location of the file that contains the list of tests. The default file is stress_init.txt in the test suite
directory.

• --stress-loop-count=N

In sequential stress-test mode, the number of loops to execute before exiting.

• --stress-mode=mode

This option indicates the test order in stress-test mode. The mode value is either random to select tests in random order or
seq to run tests in each thread in the order specified in the test list file. The default mode is random.

• --stress-suite=suite_name

The name of the test suite to use for stress testing. The default suite name is main (the regular test suite located in the mysql-
test directory).

• --stress-test-count=N

For stress testing, the number of tests to execute before exiting.

• --stress-test-duration=N

For stress testing, the duration of stress testing in seconds.

• --stress-test-file=file_name

The file that contains the list of tests to use in stress testing. The tests should be named without the .test extension. The de-
fault file is stress_tests.txt in the test suite directory.

• --stress-threads=N

MySQL Test Programs

30

The number of threads to use in stress testing. The default is 5.

• --suite=suite_name

Run the named test suite. The default name is main (the regular test suite located in the mysql-test directory).

• --suite-timeout=minutes

Specify the maximum test suite runtime.

• --testcase-timeout

Specify the maximum test case runtime.

• --timer

Cause mysqltest to generate a timing file. The default file is named ./var/log/timer.

• --tmpdir=path

The directory where temporary file are stored. The default location is ./var/tmp.

• --unified-diff, --udiff

Use unified diff format when presenting differences between expected and actual test case results.

• --use-old-data

Do not install the test databases. (Use existing ones.)

• --user-test=val

Unused.

• --user=user_name

The MySQL user name to use when connecting to the server.

• --valgrind

Run mysqltest and mysqld with valgrind.

• --valgrind-all

Like --valgrind, but passes the --verbose and --show-reachable options to valgrind.

• --valgrind-mysqltest

Run mysqltest with valgrind.

• --valgrind-mysqltest-all

Like --valgrind-mysqltest, but passes the --verbose and --show-reachable options to valgrind.

• --valgrind-options=str

Extra options to pass to valgrind.

• --valgrind-path=path

Specify the path name to the valgrind executable.

• --vardir=path

Specify the path where files generated during the test run are stored. The default location is ./var.

• --view-protocol

Pass the --view-protocol option to mysqltest.

• --vs-config=config_val

MySQL Test Programs

31

Specify the configuration used to build MySQL (for example, --vs-config=debug --vs-config=release). This op-
tion is for Windows only. It is available as of MySQL 4.1.23, 5.0.30, and 5.1.14.

• --wait-timeout=N

Unused?

• --warnings

This option is a synonym for --log-warnings.

• --with-ndbcluster

Use NDB Cluster and enable test cases that require it.

• --with-ndbcluster-all

Use NDB Cluster in all tests.

• --with-ndbcluster-only

Run only test cases that have ndb in their name.

• --with-ndbcluster-slave

Unknown.

• --with-openssl

This option is a synonym for --ssl.

Note

mysql-test-run supports the following options not supported by mysql-test-run.pl: --local, -
-local-master, --ndb-verbose, --ndb_mgm-extra-opts, --ndb_mgmd-extra-opts, -
-ndbd-extra-opts, --old-master, --purify, --use-old-data, --valgrind-mysqltest-all.

Conversely, mysql-test-run.pl supports the following options not supported by mysql-test-run: -
-benchdir, --check-testcases, --client-ddd, --client-debugger, --cursor-protocol, -
-debugger, --im-mysqld1-port, --im-mysqld2-port, --im-port, --manual-debug, -
-netware, --notimer, --reorder, --script-debug, --skip-im, --skip-ssl, --sp-protocol, -
-start-dirty, --suite, --suite-timeout, --testcase-timeout, --udiff, --unified-diff,,
--valgrind-path, --vardir, --view-protocol.

5.4. mysql-stress-test.pl — Server Stress Test Program
The mysql-stress-test.pl Perl script performs stress-testing of the MySQL server. (MySQL 5.0 and up only)

mysql-stress-test.pl requires a version of Perl that has been built with threads support.

Invoke mysql-stress-test.pl like this:

shell> mysql-stress-test.pl [options]

mysql-stress-test.pl supports the following options:

• --help

Display a help message and exit.

• --abort-on-error

Unknown.

• --check-tests-file

Periodically check the file that lists the tests to be run. If it has been modified, reread the file. This can be useful if you update

MySQL Test Programs

32

the list of tests to be run during a stress test.

• --cleanup

Force cleanup of the working directory.

• --log-error-details

Log error details in the global error log file.

• --loop-count=N

In sequential test mode, the number of loops to execute before exiting.

• --mysqltest=path

The path name to the mysqltest program.

• --server-database=db_name

The database to use for the tests.

• --server-host=host_name

The host name of the local host to use for making a TCP/IP connection to the local server. By default, the connection is made to
localhost using a Unix socket file.

• --server-logs-dir=path

This option is required. path is the directory where all client session logs will be stored. Usually this is the shared directory
that is associated with the server used for testing.

• --server-password=password

The password to use when connecting to the server.

• --server-port=port_num

The TCP/IP port number to use for connecting to the server. The default is 3306.

• --server-socket=file_name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use. The default if
/tmp/mysql.sock.

• --server-user=user_name

The MySQL user name to use when connecting to the server. The default is root.

• --sleep-time=N

The delay in seconds between test executions.

• --stress-basedir=path

This option is required. path is the working directory for the test run. It is used as the temporary location for result tracking
during testing.

• --stress-datadir=path

The directory of data files to be used during testing. The default location is the data directory under the location given by the
--stress-suite-basedir option.

• --stress-init-file[=path]

file_name is the location of the file that contains the list of tests. If missing, the default file is stress_init.txt in the
test suite directory.

• --stress-mode=mode

This option indicates the test order in stress-test mode. The mode value is either random to select tests in random order or

MySQL Test Programs

33

seq to run tests in each thread in the order specified in the test list file. The default mode is random.

• --stress-suite-basedir=path

This option is required. path is the directory that has the t and r subdirectories containing the test case and result files. This
directory is also the default location of the stress-test.txt file that contains the list of tests. (A different location can be
specified with the --stress-tests-file option.)

• --stress-tests-file[=file_name]

Use this option to run the stress tests. file_name is the location of the file that contains the list of tests. If file_name is
omitted, the default file is stress-test.txt in the stress suite directory. (See --stress-suite-basedir.)

• --suite=suite_name

Run the named test suite. The default name is main (the regular test suite located in the mysql-test directory).

• --test-count=N

The number of tests to execute before exiting.

• --test-duration=N

The duration of stress testing in seconds.

• --test-suffix=str

Unknown.

• --threads=N

The number of threads. The default is 1.

• --verbose

Verbose mode. Print more information about what the program does.

MySQL Test Programs

34

Chapter 6. mysqltest Language Reference
This chapter describes the test language implemented by mysqltest. The language allows input to contain a mix of comments,
commands executed by mysqltest itself, and SQL statements that mysqltest sends to a MySQL server for execution.

Terminology notes:

• A “command” is an input test that mysqltest recognizes and executes itself. A “statement” is an SQL statement or query
that mysqltest sends to the MySQL server to be executed.

• When mysqltest starts, it opens a connection named default to the MySQL server, using any connection parameters spe-
cified by the command options. (For a local server, the default user name is root. For an external server, the default user name
is test or the user specified with the --user option.) You can use the connect command to open other connections, the
connection command to switch between connections, and the disconnect command to close connections. However, the
capability for switching connections means that the connection named default need not be the connection in use at a given
time. To avoid ambiguity, this document avoids the term “default connection.” It uses the term “current connection” to mean
“the connection currently in use,” which might be different from “the connection named default.”

6.1. mysqltest Input Conventions
mysqltest reads input lines and processes them as follows:

• “End of line” means a newline (linefeed) character. A carriage return/linefeed (CRLF) pair also is allowable as as a line termin-
ator (the carriage return is ignored). Carriage return by itself is not allowed as a line terminator.

• A line that begins with “#” as the first non-whitespace content is treated as a comment that extends to the end of the line and is
ignored. Example:

this is a comment

• (Deprecated syntax) A line that begins with “--” as the first non-whitespace content also is treated as a comment that extends
to the end of the line. However, unlike “#” comments, if the first word of the comment is a valid mysqltest command,
mysqltest executes the line from that word to the end of the line as a command.

mysqltest interprets the following lines as comments because the first word is not a mysqltest command:

-- this is a comment
-- clean up from previous test runs

mysqltest interprets the following lines as commands and executes them because the first word is a mysqltest command:

--disconnect conn1
-- error 1050

The “--” syntax is useful for writing commands that contain embedded instances of the command delimiter:

-- echo write this text; it goes to the result file

The “--” syntax for writing comments is deprecated because of the potential for accidentally writing comments that begin with
a keyword and being executed. This syntax cannot be used for comments as of MySQL 5.1.30/6.0.8.

• Other input is taken as normal command input. The command extends to the next occurrence of the command delimiter, which
is semicolon (“;”) by default. The delimiter can be changed with the delimiter command.

If mysqltest recognizes the first word of the delimiter-terminated command, mysqltest executes the command itself.
Otherwise, mysqltest assumes that the command is an SQL statement and sends it to the MySQL server to be executed.

Because the command extends to the delimiter, a given input line can contain multiple commands, and a given command can
span multiple lines. The ability to write multiple-line statements is useful for making long statements more readable, such as a
create table statement for a table that has many columns.

After mysqltest reads a command up to a delimiter and executes it, input reading restarts following the delimiter and any re-
maining input on the line that contains the delimiter is treated as though it begins on a new line. Consider the following two input
lines:

35

echo issue a select statement; select 1; echo done
issuing the select statement;

That input contains two commands and one SQL statement:

echo issue a SELECT statement
SELECT 1;
echo done issuing the SELECT statement

Similarly, “#” comments or “--” comments can begin on a command line following a delimiter:

SELECT 'hello'; # select a string value
SELECT 'hello'; -- echo that was a SELECT statement

On a multiple-line command, “#” or “--” at the beginning of the second or following lines is not special. Thus, the second and
third lines of the following variable-assignment command are not taken as comments. Instead, the variable $a is set to a value that
contains two linefeed characters:

let $a= This is a variable
assignment that sets a variable
-- to a multiple-line value;

Note that “--” comments and normal commands have complementary properties with regard to how mysqltest reads them:

• A “--” comment is terminated by a newline, regardless of how many delimiters it contains.

• A normal command (without “--”) is terminated by the delimiter (semicolon), no matter how many newlines it contains.

mysqltest commands can be written either as comments (with a leading “--”) or as normal command input (no leading “--”).
Use the command delimiter only in the latter case. Thus, these two lines are equivalent:

--sleep 2
sleep 2;

The equivalence is true even for the delimiter command. For example, to set the delimiter to “//”, either of these commands
work:

--delimiter //
delimiter //;

To set the delimiter back to “;”, use either of these commands:

--delimiter ;
delimiter ;//

The input language has certain ambiguities. For example, if you write the following line, intending it as a comment that indicates
where test 43 ends, it will not work:

-- End of test 43

The “comment” is not treated as such because end is a valid mysqltest command. Thus, although it is possible to write a non-
command comment that begins with “--”, it is better to use “#” instead. Writing comments with “#” also has less potential to
cause problems in the future. For example, mysqltest interprets the line --switch to conn1 as a comment currently, but if
mysqltest is extended in the future to add a switch command, that line will be treated as a command instead. If you use “#”
for all comments, this problem will not occur.

Another ambiguity occurs because a non-comment line can contain either a mysqltest command or an SQL statement. This has
a couple of implications:

• No mysqltest command should be the same as any keyword that can begin an SQL statement.

• Should extensions to SQL be implemented in the future, it is possible that a new SQL keyword could be impossible for
mysqltest to recognize as such if that keyword is already used as a mysqltest command.

6.2. mysqltest Commands

mysqltest Language Reference

36

mysqltest supports the commands described in this section. Command names are not case sensitive.

Some examples of command use are given, but you can find many more by searching the test case files in the mysql-test/t
directory.

• append_file file_name [terminator]

append_file is like write_file except that the lines up to the terminator are added to the end of the file. The file is cre-
ated if it does not exist. The file name argument is subject to variable substitution.

write_file /tmp/data01;
line one for the file
line two for the file
EOF
append_file /tmp/data01;
line three for the file
EOF

write_file /tmp/data02 END_OF_FILE;
line one for the file
line two for the file
END_OF_FILE
append_file /tmp/data02 END_OF_FILE;
line three for the file
END_OF_FILE

append_file was added in MySQL 4.1.23/5.0.41/5.1.17.

• cat_file file_name

cat_file writes the contents of the file to the output. The file name argument is subject to variable substitution.

cat_file /tmp/data01;

cat_file was added in MySQL 4.1.23/5.0.41/5.1.17.

• change_user [user_name], [password], [db_name]

Changes the current user and causes the database specified by db_name to become the default database for the current connec-
tion.

change_user root;
--change_user root,,test

change_user was added in MySQL 5.1.23.

• character_set charset_name

Set the default character set to charset_name. Initially, the character set is latin1.

character_set utf8;
--character_set sjis

• chmod_file octal_mode file_name

Change the mode of the given file. The file mode must be given as a four-digit octal number. The file name argument is subject
to variable substitution, but must evaluate to a literal file name, not a file name pattern.

chmod_file 0644 /tmp/data_xxx01;

chmod_file was added in MySQL 4.1.23/5.0.32/5.1.15.

• connect (name, host_name, user_name, password, db_name [,port_num [,socket
[,options]]])

Open a connection to the server and make the connection the current connection. (Syntax oddities: There must be whitespace
between connect and the opening parenthesis, and no whitespace after the opening parenthesis.)

The arguments to connect are:

• name is the name for the connection (for use with the connection, disconnect, and dirty_close commands).
This name must not already be in use by an open connection.

mysqltest Language Reference

37

• host_name indicates the host where the server is running.

• user_name and password are the user name and password of the MySQL account to use.

• db_name is the default database to use. As a special case, *NO-ONE* means that no default database should be selected.
You can also leave db_name blank to select no database.

• port_num, if given, is the TCP/IP port number to use for the connection. This parameter can be given by using a variable.

• socket, if given, is the socket file to use for connections to localhost. This parameter can be given by using a vari-
able.

• options can be one or more of the words SSL and COMPRESS, separated by spaces. These specify the use of SSL and
the compressed client/server protocol, respectively.

To omit an argument, just leave it blank. For an omitted argument, mysqltest uses an empty string for the first five argu-
ments and the options argument. For omitted port or socket options, mysqltest uses the default port or socket.

connect (conn1,localhost,root,,);
connect (conn2,localhost,root,mypass,test);
connect (conn1,127.0.0.1,root,,test,$MASTER_MYPORT);

The last example assumes that the $MASTER_MYPORT variable has already been set (perhaps as an environment variable).

If a connection attempt fails initially, mysqltest retries five times if the abort-on-error setting is enabled.

• connection connection_name

Select connection_name as the current connection. To select the connection that mysqltest opens when it starts, use the
name default.

connection master;
connection conn2;
connection default;

As of MySQL 5.1.32 and 6.0.10, a variable can be used to specify the connection_name value.

• copy_file from_file to_file

Copy the file from_file to the file to_file. The command fails if to_file already exists. The file name arguments are
subject to variable substitution.

copy_file was added in MySQL 4.1.23/5.0.30/5.1.13.

• dec $var_name

Decrement a numeric variable. If the variable does not have a numeric value, the result is undefined.

dec $count;
dec $2;

• delimiter str

Set the command delimiter to str, which may consist of 1 to 15 characters. The default delimiter is the semicolon character
(“;”).

delimiter //;
--delimiter stop

• die [message]

Aborts the test with an error code after printing the given message as the reason. Suppose that a test file contains the following
line:

die "Cannot continue";

When mysqltest encounters that line, it produces the following result and exits:

mysqltest: At line 1: "Cannot continue"
not ok

mysqltest Language Reference

38

die was added in MySQL 4.1.23/5.0.30/5.1.12.

• diff_files file_name1 file_name2

Compare the two files. The command succeeds if the files are the same, and fails if they are different or either file does not ex-
ist. The file name arguments are subject to variable substitution.

diff_files was added in MySQL 4.1.23/5.0.41/5.1.17.

• dirty_close connection_name

Close the named connection. This is like disconnect except that it calls vio_delete() before it closes the connection. If
the connection is the current connection, you should use the connection command to switch to a different connection before
executing further SQL statements.

As of MySQL 5.1.32 and 6.0.10, a variable can be used to specify the connection_name value.

• disable_abort_on_error, enable_abort_on_error

Disable or enable abort-on-error behavior. This setting is enabled by default. With this setting enabled, mysqltest aborts the
test when a statement sent to the server results in an unexpected error, and does not generate the .reject file. For discussion
of reasons why it can be useful to disable this behavior, see Section 6.5, “Error Handling”.

--disable_abort_on_error
--enable_abort_on_error

• disable_info, enable_info

Disable or enable additional information about SQL statement results. This setting is disabled by default. With this setting en-
abled, mysqltest displays the affected-rows count and the output from the mysql_info() C API function. The
“affected-rows” value is “rows selected” for statements such as SELECT and “rows modified” for statements that change data.

--disable_info
--enable_info

• disable_metadata, enable_metadata

Disable or enable query metadata display. This setting is disabled by default. With this setting enabled, mysqltest adds
query metadata to the result. This information consists of the values corresponding to the members of the MYSQL_FIELD C
API data structure, for each column of the result.

--disable_metadata
--enable_metadata

• disable_parsing, enable_parsing

Disable or enable query parsing. This setting is enabled by default. When disabled, mysqltest ignores everything until en-
able_parsing.

--disable_parsing
--enable_parsing

• disable_ps_protocol, enable_ps_protocol

Disable or enable prepared-statement protocol. This setting is disabled by default unless the --ps-protocol option is given.

--disable_ps_protocol
--enable_ps_protocol

• disable_ps_warnings, enable_ps_warnings

Disable or enable prepared-statement warnings. This setting is enabled by default.

--disable_ps_warnings
--enable_ps_warnings

• disable_query_log, enable_query_log

Disable or enable query logging. This setting is enabled by default. With this setting enabled, mysqltest echoes input SQL

mysqltest Language Reference

39

statements to the test result.

One reason to disable query logging is to reduce the amount of test output produces, which also makes comparison of actual
and expected results more efficient.

--disable_query_log
--enable_query_log

• disable_reconnect, enable_reconnect

Disable or enable automatic reconnect for dropped connections. (The default depends the client library version.) This command
applies to connections made afterward.

--disable_reconnect
--enable_reconnect

• disable_result_log, enable_result_log

Disable or enable the result log. This setting is enabled by default. With this setting enabled, mysqltest displays query res-
ults (and results from commands such as echo and exec).

--disable_result_log
--enable_result_log

• disable_rpl_parse, enable_rpl_parse

Disable or enable parsing of statements to determine whether they go to the master or slave. (MySQL 4.0 and up only.) The de-
fault is whatever the default is for the C API library.

--disable_rpl_parse
--enable_rpl_parse

• disable_warnings, enable_warnings

Disable or enable warnings. This setting is enabled by default. With this setting enabled, mysqltest uses SHOW WARNINGS
to display any warnings produced by SQL statements.

--disable_warnings
--enable_warnings

• disconnect connection_name

Close the named connection. If the connection is the current connection, you should use the connection command to switch
to a different connection before executing further SQL statements.

disconnect conn2;
disconnect slave;

• echo text

Echo the text to the test result. References to variables within the text are replaced with the corresponding values.

--echo "Another sql_mode test"
echo "should return only 1 row";

• end

End an if or while block. If there is no such block open, mysqltest exits with an error. See Section 6.4, “mysqltest
Flow Control Constructs”, for information on flow-control constructs.

mysqltest considers } and end the same: Both end the current block.

• end_timer

Stop the timer. By default, the timer does not stop until just before mysqltest exits.

• error error_code [, error_code] ...

Specify one or more comma-separated error values that the next command is expected to return. Each error_code value is a
MySQL-specific error number or an SQLSTATE value. (These are the kinds of values returned by the mysql_errno() and

mysqltest Language Reference

40

mysql_sqlstate() C API functions, respectively.)

If you specify an SQLSTATE value, it should begin with an S to enable mysqltest to distinguish it from a MySQL error
number. For example, the error number 1050 and the SQLSTATE value 42S01 are equivalent, so the following commands
specify the same expected error:

--error 1050
--error S42S01

SQLSTATE values should be five characters long and may contain only digits and uppercase letters.

Is is also possible to use the symbolic error name from mysqld_error.h:

--error ER_TABLE_EXISTS_ERROR

If a statement fails with an error that has not been specified as expected by means of a error command, mysqltest aborts
and reports the error message returned by the MySQL server.

If a statement fails with an error that has been specified as expected by means of a error command, mysqltest does not
abort. Instead, it continues and writes a message to the result output.

• If an error command is given with a single error value and the statement fails with that error, mysqltest reports the er-
ror message returned by the MySQL server.

Input:

--error S42S02
DROP TABLE t;

mysqltest reports:

ERROR 42S02: Unknown table 't'

• If an error command is given with multiple error values and the statement fails with that error, mysqltest reports a
generic message. (This is true even if the error values are all the same, a fact that can be used if you want a message that
does not contain varying information such as table names.)

Input:

--error S41S01,S42S02
DROP TABLE t;

mysqltest reports:

Got one of the listed errors

An error value of 0 or S00000 means “no error,” so using either for an error command is the same as saying explicitly, “no
error is expected, the statement must succeed.”.

To indicate that you expect success or a given error or errors, specify 0 or S00000 first in the error list. If you put the no-error
value later in the list, the test will abort if the statement is successful. That is, these two commands have different effects:

--error 0,1051
--error 1051,0

You can use error to specify shell status values for testing the value of shell commands executed via the exec command.
This does not apply to system, for which the command status is ignored.

• eval statement

Evaluate the statement by replacing references to variables within the text with the corresponding values. Then send the result-
ing statement to the server to be executed. Use “\$” to specify a literal “$” character.

The advantage of using eval statement versus just statement is that eval provides variable expansion.

eval USE $DB;
eval CHANGE MASTER TO MASTER_PORT=$SLAVE_MYPORT;
eval PREPARE STMT1 FROM "$my_stmt";

mysqltest Language Reference

41

• exec command [arg] ...

Execute the shell command using the popen() library call. References to variables within the command are replaced with the
corresponding values. Use “\$” to specify a literal “$” character.

On Cygwin, the command is executed from cmd.exe, so commands such as rm cannot be executed with exec. Use system
instead.

--exec $MYSQL_DUMP --xml --skip-create test
--exec rm $MYSQLTEST_VARDIR/tmp/t1
exec $MYSQL_SHOW test -v -v;

Note

exec or system are sometimes used to perform file system operations, but the command for doing so tend to be op-
erating system specifc, which reduces test portability. mysqltest now has several commands to perform these op-
erations portably, so they should be used instead: remove_file, chmod_file, mkdir, and so forth.

• exit

Terminate the test case. This is considered a “normal termination.” That is, using exit does not result in evaluation of the test
case as having failed.

• file_exists file_name

file_exists succeeds if the name file exists and fails otherwise. The file name argument is subject to variable substitution.

file_exists /etc/passwd;

file_exists was added in MySQL 4.1.23/5.0.30/5.1.13.

• horizontal_results

Set the default query result display format to horizontal. Initially, the default is to display results horizontally.

--horizontal_results

• if (expr)

Begin an if block, which continues until an end line. mysqltest executes the block if the expression is true. There is no
provision for else with if. See Section 6.4, “mysqltest Flow Control Constructs”, for further information about if state-
ments.

let $counter= 0;
if ($counter)
{
echo Counter is greater than 0, (counter=0);

}
if (!$counter)
{
echo Counter is not 0, (counter=0);

}

• inc $var_name

Increment a numeric variable. If the variable does not have a numeric value, the result is undefined.

inc $i;
inc $3;

• let $var_name = value

let $var_name = query_get_value(query, col_name, row_num)

Assign a value to a variable. The variable name cannot contain whitespace or the “=” character. mysqltest aborts with an er-
ror if the value is erroneous.

As of MySQL 5.0.26/5.1.12, references to variables within value are replaced with their corresponding values.

If the let command is specified as a normal command (that is, not beginning with “--”), value includes everything up to the
command delimiter, and thus can span multiple lines.

mysqltest Language Reference

42

--let $1= 0
let $count= 10;

The result from executing a query can be assigned to a variable by enclosing the query within backtick (“`”) characters:

let $q= `SELECT VERSION()`;

The let command can set environment variables, not just mysqltest test language variables. To assign a value to an envir-
onment variable rather than a test language variable, just omit the dollar sign:

let $mysqltest_variable= foo;
let ENV_VARIABLE= bar;

This is useful in interaction with external tools. In particular, when using the perl command, the Perl code cannot access test
language variables, but it can access environment variables. For example, the following statement can access the
ENV_VARIABLE value:

print $ENV{'ENV_VARIABLE'};

As of MySQL 4.1.24/5.0.44/5.1.20, let syntax is extended to allow the retrieval of a value from a query result set produced by
a statement such as SELECT or SHOW. See the description of query_get_value() for more information.

• mkdir dir_name

Create a directory named dir_name. Returns 0 for success and 1 for failure.

--mkdir testdir

mkdir was added in MySQL 5.0.58/5.1.24/6.0.5.

• move_file from_name to_name

move_file renames from_name to to_name. The file name arguments are subject to variable substitution, but must evalu-
ate to a literal file name, not a file name pattern.

move_file /tmp/data01 /tmp/test.out;

move_file was added in MySQL 6.0.12.

• perl [terminator]

Use Perl to execute the following lines of the test file. The lines end when a line containing the terminator is encountered. The
default terminator is EOF, but a different terminator can be provided.

perl;
print "This is a test\n";
EOF

perl END_OF_FILE;
print "This is another test\n";
END_OF_FILE

perl was added in MySQL 4.1.23/5.0.30/5.1.13.

• ping

Ping the server. This executes the mysql_ping() C API function. The function result is discarded. The effect is that if the
connection has dropped and reconnect is enabled, pinging the server causes a reconnect.

• query [statement]

Send the statement to the server to be executed. The query command can be used to force mysqltest to send a statement to
the server even if it begins with a keyword that is a mysqltest command.

• query_get_value(query, col_name, row_num)

As of MySQL 4.1.24/5.0.44/5.1.20, the query_get_value() function can be used on on the right hand side of a variable
assigment in a let statement.

mysqltest Language Reference

43

query_get_value() enables retrieval of a value from a query result set produced by a statement such as SELECT or
SHOW. The first argument indicates the query to execute. The second and third arguments indicate the column name and row
number that specify which value to extract from the result set. The column name is case sensitive. Row numbers begin with 1.
The arguments can be given literally or supplied using variables.

Suppose that the test file contains this input:

CREATE TABLE t1(a INT, b VARCHAR(255), c DATETIME);
SHOW COLUMNS FROM t1;
let $value= query_get_value(SHOW COLUMNS FROM t1, Type, 1);
echo $value;

The result will be:

CREATE TABLE t1(a INT, b VARCHAR(255), c DATETIME);
SHOW COLUMNS FROM t1;
+Field Type Null Key Default Extra
+a int(11) YES NULL
+b varchar(255) YES NULL
+c datetime YES NULL

let $value= query_get_value(SHOW COLUMNS FROM t1, Type, 1);
echo $value;
+int(11)

If the query fails, an error message occurs and the test fails.

• query_horizontal statement

Execute the statement and display its result horizontally.

query_horizontal SELECT PI();

• query_vertical statement

Execute the statement and display its result vertically.

query_vertical SELECT PI();

• real_sleep num

Sleep num seconds. num can have a fractional part. Unlike the sleep command, real_sleep is not affected by the -
-sleep command-line option.

--real_sleep 10
real_sleep 5;

Try not to use sleep or real_sleep commands more than necessary. The more of them there are, the slower the test suite
becomes.

• reap

Receive the result of the statement most recently sent with the send command.

• remove_file file_name

remove_file removes the file. It fails with an error if the file does not exist. The file name argument is subject to variable
substitution, but must evaluate to a literal file name, not a file name pattern.

remove_file /tmp/data01;

remove_file was added in MySQL 4.1.23/5.0.30/5.1.13.

• replace_column col_num value [col_num value] ...

Replace strings in the output from the next statement. The value in col_num is replaced by the corresponding value. There
can be more than one col_num/value pair. Column numbers start with 1.

A replacement value can be double-quoted. (Use “\"” to specify a double quote within a replacement string.) Variables can be
used in a replacement value if it is not double-quoted.

mysqltest Language Reference

44

If mixed replace_xxx commands are given, only the final one applies.

Note: Although replace_regex and replace_result affect the output from exec, replace_column does not be-
cause exec output is not necessarily columnar.

--replace_column 9 #
replace_column 1 b 2 d;

• replace_regex /pattern/replacement/[i] ...

In the output from the next statement, find strings within columns of the result set that match pattern (a regular expression)
and replace them with replacement. Each instance of a string in a column that matches the pattern is replaced. Matching is
case sensitive by default. Specify the optional i modifier to cause matching to be case insensitive.

The syntax for allowable patterns is the same as for the REGEXP SQL operator. In addition, the pattern can contain parentheses
to mark substrings matched by parts of the pattern. These substrings can be referenced in the replacement string: An instance of
\N in the replacement string causes insertion of the N-th substring matched by the pattern. For example, the following com-
mand matches strawberry and replaces it with raspberry and strawberry:

--replace_regex /(strawberry)/raspberry and \1/

Multiple pattern/replacement pairs may be given. The following command replaces instances of A with C (the first pat-
tern replaces A with B, the second replaces B with C):

--replace_regex /A/B/ /B/C/

If a given pattern is not found, no error occurs and the input is unchanged.

The replace_regex command was added in MySQL 5.1.6.

• replace_result from_val to_val [from_val to_val] ...

Replace strings in the result. Each occurrence of from_val is replaced by the corresponding to_val. There can be more
than from_val/to_val pair. Arguments can be quoted with single quotes or double quotes. Variable references within the
arguments are expanded before replacement occurs. Values are matched literally. To use patterns, use the replace_regex
command.

--replace_result 1024 MAX_KEY_LENGTH 3072 MAX_KEY_LENGTH
replace_result $MASTER_MYPORT MASTER_PORT;

• require file_name

This command specifies a file to be used for comparison against the results of the next query. If the contents of the file do not
match or there is some other error, the test aborts with a “this test is not supported” error message.

--require r/slave-stopped.result
--require r/have_moscow_leap_timezone.require

• result file_name

This command specifies a file to be used for comparison when the test case completes. If the content does not match or there is
some other error, write the result to r/file_name.reject.

If the --record command-line option is given, the result command changes the file by writing the ew test result to it.

• rmdir dir_name

Remove a directory named dir_name. Returns 0 for success and 1 for failure.

--rmdir testdir

rmdir was added in MySQL 5.0.58/5.1.24/6.0.5.

• rpl_probe

Unknown.

• save_master_pos

mysqltest Language Reference

45

For a master replication server, save the current binary log file name and position. These values can be used for subsequent
sync_with_master or sync_slave_with_master commands.

• send [statement]

Send a statement to the server but do not wait for the result. The result must be received with the reap command.

If statement is omitted, the send command applies to the next statement executed. This means that send can be used on a
line by itself before a statement. Thus, this command:

send SELECT 1;

Is equivalent to these commands:

send;
SELECT 1;

• shutdown_server [timeout]

Stops the server. This command waits for the server to shut down by monitoring its process ID (PID) file. If the server's process
ID file is not gone after timeout seconds, the process will be killed. If timeout is omitted, the default is 60 seconds.

shutdown_server;
shutdown_server 30;

This command was added in MySQL 5.1.26/6.0.6.

• skip [message]

Skips the rest of the test file after printing the given message as the reason. This can be used after checking a condition that
must be satisfied, as a way of performing an exit that displays a reason. Suppose that the test file mytest has these contents:

if (1 != 0)
{
skip "One not equal to zero, skipping test";

}
echo "This command is never reached";

Executing mysqltest -x mytest yields these results:

The test './mytest' is not supported by this installation
Detected in file ./mytest at line 3
reason: "One not equal to zero, skipping test"
skipped

skip was added in MySQL 4.1.23/5.0.32/5.1.18.

• sleep num

Sleep num seconds. num can have a fractional part. If the --sleep command-line option was given, the option value over-
rides the value given in the sleep command. For example, if mysqltest is started with --sleep=10, the command
sleep 15 sleeps 10 seconds, not 15.

--real_sleep 10
real_sleep 5;

Try not to use sleep or real_sleep commands more than necessary. The more of them there are, the slower the test suite
becomes.

• sorted_result

Sort the output from the next statement if it produces a result set. sorted_result is applied just before displaying the result,
after any other result modifiers that might have been specified, such as replace_result or replace_column. If the next
statement produces no result set, sorted_result has no effect because there is nothing to sort.

sorted_result;
SELECT 2 AS "my_col" UNION SELECT 1;
let $my_stmt=SELECT 2 AS "my_col" UNION SELECT 1;
--sorted_result
eval $my_stmt;
--sorted_result

mysqltest Language Reference

46

--replace_column 1 #
SELECT '1' AS "my_col1",2 AS "my_col2"
UNION
SELECT '2',1;

sorted_result sorts the entire result of the next query. If this involves constructs such as UNION, stored procedures, or
multi-statements, the output will be in a fixed order, but all the results will be sorted together and might appear somewhat
strange.

The purpose of the sorted_result command is to produce output with a deterministic order for a given set of result rows.
It is possible to use ORDER BY to sort query results, but that can sometimes present its own problems. For example, if the op-
timizer is being investigated for some bug, ORDER BY might order the result but return an incorrect set of rows. sor-
ted_result can be used to produce sorted output even in the absence of ORDER BY.

sorted_result is useful for eliminating differences between test runs that may otherwise be difficult to compensate for.
Results without ORDER BY are not guaranteed to be returned in any given order, so the result for a given query might differ
between test runs. For example, the order might vary between different server versions, so a result file created by one server
might fail when compared to the result created by another server. The same is true for different storage engines. sor-
ted_result eliminates these order differences by producing a deterministic row order.

Other ways to eliminate differences from results without use of sorted_result include:

• Remove columns from the select list to reduce variability in the output

• Use aggregate functions such as AVG() on all columns of the select list

• Use ORDER BY

The use of aggregate functions or ORDER BY may also have the advantage of exposing other bugs by introducing additional
stress on the server. The choice of whether to use sorted_result or ORDER BY (or perhaps both) may be dictated by
whether you are trying to expose bugs, or avoid having them affect results. This means that care should be taken with sor-
ted_result because it has the potential of hiding server bugs that result in true problems with result order.

sorted_result was added in MySQL 4.1.23/5.0.32/5.1.18.

• source file_name

Read test input from the named file.

If you find that several test case files contain a common section of commands (for example, statements that create a standard set
of tables), you can put those commands in another file and those test cases that need the file can include it by means of a
source file_name command. This enables you to write the code just once rather than in multiple test cases.

Normally, the file name in the source command is relative to the mysql-test directory because mysqltest usually is
invoked in that directory.

A sourced file can use source to read other files, but take care to avoid a loop. The maximum nesting level is 16.

--source include/have_csv.inc
source include/varchar.inc;

As of MySQL 4.1.24, 5.0.50, and 5.1.21, the file name can include variable references. Variables are expanded including any
quotes in the values, so normally the values should not include quotes. Suppose that /tmp/junk contains this line:

SELECT 'I am a query';

The following example shows one way in which variable references could be used to specify the file name:

let $dir= /tmp;
let $file= junk;
source $dir/$file;

• start_timer

Restart the timer, overriding any timer start that occurred earlier. By default, the timer starts when mysqltest begins execu-
tion.

• sync_slave_with_master [connection_name]

Executing this command is equivalent to executing the following commands:

mysqltest Language Reference

47

save_master_pos;
connection connection_name;
sync_with_master 0;

If connection_name is not specified, the connection named slave is used.

The effect is to save the replication coordinates (binary log file name and position) for the server on the current connection
(which is assumed to be a master replication server), and then switch to a slave server and wait until it catches up with the saved
coordinates. Note that this command implicitly changes the current connection.

As of MySQL 5.1.32 and 6.0.10, a variable can be used to specify the connection_name value.

• sync_with_master offset

For a slave replication server, wait until it has caught up with the master. The position to synchronize to is the position saved by
the most recent save_master_pos command plus offset.

To use this command, save_master_pos must have been executed at some point earlier in the test case to cause
mysqltest to save the master's replication coordinates.

• system command [arg] ...

Execute the shell command using the system() library call. References to variables within the command are replaced with
the corresponding values. Use “\$” to specify a literal “$” character.

On Cygwin, the command is executed from cmd.exe, so commands such as rm cannot be executed with exec. Use system
instead.

--system echo '[mysqltest1]' > $MYSQLTEST_VARDIR/tmp/tmp.cnf
--system echo 'port=1234' >> $MYSQLTEST_VARDIR/tmp/tmp.cnf
system rm $MYSQLTEST_VARDIR/master-data/test/t1.MYI;

Note

exec or system are sometimes used to perform file system operations, but the command for doing so tend to be op-
erating system specifc, which reduces test portability. mysqltest now has several commands to perform these op-
erations portably, so they should be used instead: remove_file, chmod_file, mkdir, and so forth.

• vertical_results

Set the default query result display format to vertical. Initially, the default is to display results horizontally.

--vertical_results

• wait_for_slave_to_stop

Poll the current connection, which is assumed to be a connection to a slave replication server, by executing SHOW STATUS
LIKE 'Slave_running' statements until the result is OFF.

For information about alternative means of slave server control, see Section 4.13, “Writing Replication Tests”.

• while (expr)

Begin a while loop block, which continues until an end line. mysqltest executes the block repeatedly as long as the ex-
pression is true. See flow-control constructs. Section 6.4, “mysqltest Flow Control Constructs”, for further information
about while statements.

Make sure that the loop includes some exit condition that eventually occurs. This can be done by writing expr so that it be-
comes false at some point.

let $i=5;
while ($i)
{
echo $i;
dec $i;

}

• write_file file_name [terminator]

Write the following lines of the test file to the given file, until a line containing the terminator is encountered. The default ter-
minator is EOF, but a different terminator can be provided. The file name argument is subject to variable substitution. An error

mysqltest Language Reference

48

occurs if the file already exists.

write_file /tmp/data01;
line one for the file
line two for the file
EOF

write_file /tmp/data02 END_OF_FILE;
line one for the file
line two for the file
END_OF_FILE

write_file was added in MySQL 4.1.23/5.0.30/5.1.13.

6.3. mysqltest Variables
You can define variables and refer to their values. You can also refer to environment variables, and there is a built-in variable that
contains the result of the most recent SQL statement.

To define a variable, use the let command. Examples:

let $a= 14;
let $b= this is a string;
--let $a= 14
--let $b= this is a string

The variable name cannot contain whitespace or the “=” character.

If a variable has a numeric value, you can increment or decrement the value:

inc $a;
dec $a;
--inc $a
--dec $a

inc and dec are commonly used in while loops to modify the value of a counter variable that controls loop execution.

The result from executing a query can be assigned to a variable by enclosing the query within backtick (“`”) characters:

let $q= `select version()`;

References to variables can occur in the echo, eval, exec, and system commands. Variable references are replaced by their
values. As of MySQL 5.0.26/5.1.12, a non-query value assigned to a variable in a let command also can refer to variables.

As of MySQL 4.1.23/5.0.42/5.1.18, variable references that occur within `query` are expanded before the query is sent to the
server for execution.

You can refer to environment variables. For example, this command displays the value of the $PATH variable from the environ-
ment:

--echo $PATH

$mysql_errno is a built-in variable that contains the numeric error returned by the most recent SQL statement sent to the server,
or 0 if the command executed successfully. $mysql_errno has a value of –1 if no statement has yet been sent.

mysqltest first checks mysqltest variables and then environment variables. mysqltest variable names are not case sensit-
ive. Environment variable names are case sensitive.

6.4. mysqltest Flow Control Constructs
The syntax for if and while blocks looks like this:

if (expr)
{
command list

}

while (expr)
{
command list

}

mysqltest Language Reference

49

An expression result is true if nonzero, false if zero. If the expression begins with !, the sense of the test is reversed.

There is no provision for else with if.

For a while loop, make sure that the loop includes some exit condition that eventually occurs. This can be done by writing expr
so that it becomes false at some point.

The allowable syntax for expr is $var_name, !$var_name, a string or integer, or `query`.

The opening { must be separated from the preceding) by whitespace (such as a space or a line break).

As of MySQL 4.1.23/5.0.42/5.1.18, variable references that occur within `query` are expanded before the query is sent to the
server for execution.

6.5. Error Handling
If an expected error is specified and that error occurs, mysqltest continues reading input. If the command is successful or a dif-
ferent error occurs, mysqltest aborts.

If no expected error is specified, mysqltest aborts unless the command is successful. (It is implicit that you expect
$mysql_errno to be 0.)

By default, mysqltest aborts for certain conditions:

• A statement that fails when it should have succeeded. The following statement should succeed if table t exists;

SELECT * FROM t;

• A statement that fails with an error different from that specified:

--error 1
SELECT * FROM no_such_table;

• A statement that succeeds when an error was expected:

--error 1
SELECT 'a string';

You can disable the abort for errors of the first type by using the disable_abort_on_error command. In this case, when er-
rors occur for statements that should succeed, mysqltest continues processing intput.

disable_abort_on_error does not cause mysqltest to ignore errors for the other two types, where you explicitly state
which error you expect. This behavior is intentional. The rationale is that if you use the error command to specify an expected
error, it is assumed that the test is sufficiently well characterized that only the specified error is accceptable.

If you do not use the error command, it is assumed that you might not know which error to expect or that it might be difficult to
characterize all possible errors that could occur. In this case, disable_abort_on_error is useful for causing mysqltest to
continue processing input. This can be helpful in the following circumstances:

• During test case development, it is useful to process all input even if errors occur so that you can see all errors at once, such as
those that occur due to typographical or syntax errors. Otherwise, you can see and fix only one scripting problem at a time.

• Within a file that is included with a source command by several different test cases, errors might vary depending on the pro-
cessing environment that is set up prior to the source command.

• Tests that follow a given statement that can fail are independent of that statement and do not depend on its result.

mysqltest Language Reference

50

Chapter 7. Creating and Executing Unit Tests
As of MySQL 5.1, storage engines and plugins can have unit tests to test their components. The top-level Makefile target
test-unit run all unit tests: It scans the storage engine and plugin directories, the engines' and plugins' directories, recursively,
and executes all executable files with a name that ends with -t.

The unit-testing facility is based on the Test Anything Protocol (TAP) which is mainly used when developing Perl and PHP mod-
ules. To write unit tests for C/C++ code, MySQL has developed a library for generating TAP output from C/C++ files. Each unit
test is written as a separate source file that is compiled to produce an executable. For the unit test to be recognized as a unit test, the
executable file has to be of the format mytext-t. For example, you can create a source file named mytest-t.c the compiles to
produce an executable mytest-t. The executable will be found and run when you execute make test or make test-unit
in the distribution top-level directory.

Example unit tests can be found in the unittest/examples directory of a MySQL source distribution. The code for the
MyTAP protocol is located in the unittest/mytap directory.

Each unit test file should be stored in a storage engine or plugin directory (storage/engine_name or plugin/plu-
gin_name), or one of its subdirectories. A reasonable convention is to create a unittest subdirectory under the storage engine
or plugin directory and create unit test files in unittest.

51

Index

Symbols
--combination option

mysql-test-run.pl, 15, 16
--mysqld option

mysql-test-run.pl, 15
--mysqltest option

mysql-test-run.pl, 15

A
abort-on-error option

mysql-stress-test.pl, 32

B
basedir option

mysqltest, 20
mysql_client_test, 23

bench option
mysql-test-run.pl, 25

benchdir option
mysql-test-run.pl, 25

big option
mysql-test-run.pl, 25

big-test option
mysqltest, 20

binary log format
controlling, 16

C
character-sets-dir option

mysqltest, 20
check-testcases option

mysql-test-run.pl, 25
check-tests-file option

mysql-stress-test.pl, 32
cleaning up, 10
cleanup option

mysql-stress-test.pl, 33
client-bindir option

mysql-test-run.pl, 25
client-ddd option

mysql-test-run.pl, 25
client-debugger option

mysql-test-run.pl, 25
client-gdb option

mysql-test-run.pl, 26
client-libdir option

mysql-test-run.pl, 26
coding guidelines

test case, 8
combination option

mysql-test-run.pl, 26
combinations file

mysql-test-run.pl, 15, 16
comment option

mysql-test-run.pl, 26
compress option

mysql-test-run.pl, 26
mysqltest, 21

count option
mysql_client_test, 23

cursor-protocol option
mysql-test-run.pl, 26
mysqltest, 21

D
database option

mysqltest, 21
mysql_client_test, 23

ddd option
mysql-test-run.pl, 26

debug option
mysql-test-run.pl, 26
mysqltest, 21
mysql_client_test, 23

Debug Sync facility, 18
debug-check option

mysqltest, 21
debug-info option

mysqltest, 21
debug-sync-timeout option

mysql-test-run.pl, 26
debugger option

mysql-test-run.pl, 26
do-test option

mysql-test-run.pl, 26

E
embedded-server option

mysql-test-run.pl, 26
error checking, 11
experimental option

mysql-test-run.pl, 27
extern option

mysql-test-run.pl, 27

F
fast option

mysql-test-run.pl, 27
force option

mysql-test-run.pl, 27

G
gcov option

mysql-test-run.pl, 27
gdb option

mysql-test-run.pl, 27
getopt-ll-test option

mysql_client_test, 23
gprof option

mysql-test-run.pl, 27

H
have_binlog_format_*.inc include files, 17
help option

mysql-stress-test.pl, 32
mysql-test-run.pl, 25
mysqltest, 20
mysql_client_test, 23

host option
mysqltest, 21
mysql_client_test, 23

I
im-mysqld1-port option

mysql-test-run.pl, 27
im-mysqld2-port option

mysql-test-run.pl, 27
im-port option

mysql-test-run.pl, 27
include files, 15

52

as subroutines, 16
include option

mysqltest, 21

L
lettercase conventions

mysqltest commands, 9
SQL statements, 9

log-error-details option
mysql-stress-test.pl, 33

log-warnings option
mysql-test-run.pl, 27

logdir option
mysqltest, 21

loop-count option
mysql-stress-test.pl, 33

M
manual-debug option

mysql-test-run.pl, 27
manual-gdb option

mysql-test-run.pl, 27
mark-progress option

mysqltest, 21
master-binary option

mysql-test-run.pl, 27
master_port option

mysql-test-run.pl, 27
max-connect-retries option

mysqltest, 21
mem option

mysql-test-run.pl, 27
mysql-stress-test.pl, 32

abort-on-error option, 32
check-tests-file option, 32
cleanup option, 33
help option, 32
log-error-details option, 33
loop-count option, 33
mysqltest option, 33
server-database option, 33
server-host option, 33
server-logs-dir option, 33
server-password option, 33
server-port option, 33
server-socket option, 33
server-user option, 33
sleep-time option, 33
stress-basedir option, 33
stress-datadir option, 33
stress-init-file option, 33
stress-mode option, 33
stress-suite-basedir option, 34
stress-tests-file option, 34
suite option, 34
test-count option, 34
test-duration option, 34
test-suffix option, 34
threads option, 34
verbose option, 34

mysql-test-run.pl, 24
bench option, 25
benchdir option, 25
big option, 25
check-testcases option, 25
client-bindir option, 25
client-ddd option, 25
client-debugger option, 25
client-gdb option, 26

client-libdir option, 26
combination option, 26
comment option, 26
compress option, 26
cursor-protocol option, 26
ddd option, 26
debug option, 26
debug-sync-timeout option, 26
debugger option, 26
do-test option, 26
embedded-server option, 26
experimental option, 27
extern option, 27
fast option, 27
force option, 27
gcov option, 27
gdb option, 27
gprof option, 27
help option, 25
im-mysqld1-port option, 27
im-mysqld2-port option, 27
im-port option, 27
log-warnings option, 27
manual-debug option, 27
manual-gdb option, 27
master-binary option, 27
master_port option, 27
mem option, 27
mysqld option, 28
mysqltest option, 28
ndb-connectstring option, 28
ndb-connectstring-slave option, 28
ndb-extra-test option, 28
ndbcluster-port option, 28
ndbcluster-port-slave option, 28
ndbcluster_port option, 28
netware option, 28
notimer option, 28
ps-protocol option, 28
record option, 28
reorder option, 28
report-features option, 28
script-debug option, 28
skip-im option, 29
skip-master-binlog option, 29
skip-ndb option, 29
skip-ndb-slave option, 29
skip-ndbcluster option, 29
skip-ndbcluster-slave option, 29
skip-rpl option, 29
skip-slave-binlog option, 29
skip-ssl option, 29
skip-test option, 29
slave-binary option, 29
slave_port option, 29
sleep option, 29
small-bench option, 29
socket option, 29
sp-protocol option, 29
ssl option, 29
start option, 30
start-and-exit option, 30
start-dirty option, 30
start-from option, 30
strace-client option, 30
stress option, 30
stress-init-file option, 30
stress-loop-count option, 30
stress-mode option, 30
stress-suite option, 30

Index

53

stress-test-count option, 30
stress-test-duration option, 30
stress-test-file option, 30
stress-threads option, 30
suite option, 31
suite-timeout option, 31
testcase-timeout option, 31
timer option, 31
tmpdir option, 31
unified-diff option, 31
use-old-data option, 31
user option, 31
user-test option, 31
valgrind option, 31
valgrind-all option, 31
valgrind-mysqltest option, 31
valgrind-mysqltest-all option, 31
valgrind-options option, 31
valgrind-path option, 31
vardir option, 31
view-protocol option, 31
vs-config option, 31
wait-timeout option, 32
warnings option, 32
with-ndbcluster option, 32
with-ndbcluster-all option, 32
with-ndbcluster-only option, 32
with-ndbcluster-slave option, 32
with-openssl option, 32

mysqld option
mysql-test-run.pl, 28

mysqltest, 20
basedir option, 20
big-test option, 20
character-sets-dir option, 20
compress option, 21
cursor-protocol option, 21
database option, 21
debug option, 21
debug-check option, 21
debug-info option, 21
help option, 20
host option, 21
include option, 21
logdir option, 21
mark-progress option, 21
max-connect-retries option, 21
no-defaults option, 21
password option, 21
port option, 21
ps-protocol option, 21
quiet option, 21
record option, 22
result-file option, 22
server-arg option, 22
server-file option, 22
silent option, 21, 22
skip-safemalloc option, 22
sleep option, 22
socket option, 22
sp-protocol option, 22
test-file option, 22
timer-file option, 22
tmpdir option, 22
user option, 22
verbose option, 22
version option, 23
view-protocol option, 23

mysqltest option
mysql-stress-test.pl, 33

mysql-test-run.pl, 28
mysqltest_embedded, 20
mysql_client_test, 23

basedir option, 23
count option, 23
database option, 23
debug option, 23
getopt-ll-test option, 23
help option, 23
host option, 23
password option, 23, 23
port option, 23
server-arg option, 23
silent option, 23
socket option, 24
user option, 24
vardir option, 24

mysql_client_test_embedded, 23

N
ndb-connectstring option

mysql-test-run.pl, 28
ndb-connectstring-slave option

mysql-test-run.pl, 28
ndb-extra-test option

mysql-test-run.pl, 28
ndbcluster-port option

mysql-test-run.pl, 28
ndbcluster-port-slave option

mysql-test-run.pl, 28
ndbcluster_port option

mysql-test-run.pl, 28
netware option

mysql-test-run.pl, 28
no-defaults option

mysqltest, 21
notimer option

mysql-test-run.pl, 28

O
object naming conventions, 9

P
password option

mysqltest, 21
mysql_client_test, 23, 23

port option
mysqltest, 21
mysql_client_test, 23

ps-protocol option
mysql-test-run.pl, 28
mysqltest, 21

Q
quiet option

mysqltest, 21

R
record option

mysql-test-run.pl, 28
mysqltest, 22

reorder option
mysql-test-run.pl, 28

replication testing, 17
report-features option

mysql-test-run.pl, 28
result file

Index

54

generating, 11
result-file option

mysqltest, 22

S
script-debug option

mysql-test-run.pl, 28
server-arg option

mysqltest, 22
mysql_client_test, 23

server-database option
mysql-stress-test.pl, 33

server-file option
mysqltest, 22

server-host option
mysql-stress-test.pl, 33

server-logs-dir option
mysql-stress-test.pl, 33

server-password option
mysql-stress-test.pl, 33

server-port option
mysql-stress-test.pl, 33

server-socket option
mysql-stress-test.pl, 33

server-user option
mysql-stress-test.pl, 33

silent option
mysqltest, 21, 22
mysql_client_test, 23

skip-im option
mysql-test-run.pl, 29

skip-master-binlog option
mysql-test-run.pl, 29

skip-ndb option
mysql-test-run.pl, 29

skip-ndb-slave option
mysql-test-run.pl, 29

skip-ndbcluster option
mysql-test-run.pl, 29

skip-ndbcluster-slave option
mysql-test-run.pl, 29

skip-rpl option
mysql-test-run.pl, 29

skip-safemalloc option
mysqltest, 22

skip-slave-binlog option
mysql-test-run.pl, 29

skip-ssl option
mysql-test-run.pl, 29

skip-test option
mysql-test-run.pl, 29

slave-binary option
mysql-test-run.pl, 29

slave_port option
mysql-test-run.pl, 29

sleep option
mysql-test-run.pl, 29
mysqltest, 22

sleep-time option
mysql-stress-test.pl, 33

small-bench option
mysql-test-run.pl, 29

socket option
mysql-test-run.pl, 29
mysqltest, 22
mysql_client_test, 24

sp-protocol option
mysql-test-run.pl, 29
mysqltest, 22

ssl option
mysql-test-run.pl, 29

start option
mysql-test-run.pl, 30

start-and-exit option
mysql-test-run.pl, 30

start-dirty option
mysql-test-run.pl, 30

start-from option
mysql-test-run.pl, 30

strace-client option
mysql-test-run.pl, 30

stress option
mysql-test-run.pl, 30

stress-basedir option
mysql-stress-test.pl, 33

stress-datadir option
mysql-stress-test.pl, 33

stress-init-file option
mysql-stress-test.pl, 33
mysql-test-run.pl, 30

stress-loop-count option
mysql-test-run.pl, 30

stress-mode option
mysql-stress-test.pl, 33
mysql-test-run.pl, 30

stress-suite option
mysql-test-run.pl, 30

stress-suite-basedir option
mysql-stress-test.pl, 34

stress-test-count option
mysql-test-run.pl, 30

stress-test-duration option
mysql-test-run.pl, 30

stress-test-file option
mysql-test-run.pl, 30

stress-tests-file option
mysql-stress-test.pl, 34

stress-threads option
mysql-test-run.pl, 30

suite option
mysql-stress-test.pl, 34
mysql-test-run.pl, 31

suite-timeout option
mysql-test-run.pl, 31

T
test case coding guidelines, 8
test cases, 1
test framework, 2
test-count option

mysql-stress-test.pl, 34
test-duration option

mysql-stress-test.pl, 34
test-file option

mysqltest, 22
test-suffix option

mysql-stress-test.pl, 34
testcase-timeout option

mysql-test-run.pl, 31
thread synchronization, 18
threads option

mysql-stress-test.pl, 34
timer option

mysql-test-run.pl, 31
timer-file option

mysqltest, 22
tmpdir option

mysql-test-run.pl, 31

Index

55

mysqltest, 22

U
unified-diff option

mysql-test-run.pl, 31
unit tests, 1, 2, 51
use-old-data option

mysql-test-run.pl, 31
user option

mysql-test-run.pl, 31
mysqltest, 22
mysql_client_test, 24

user-test option
mysql-test-run.pl, 31

V
valgrind option

mysql-test-run.pl, 31
valgrind-all option

mysql-test-run.pl, 31
valgrind-mysqltest option

mysql-test-run.pl, 31
valgrind-mysqltest-all option

mysql-test-run.pl, 31
valgrind-options option

mysql-test-run.pl, 31
valgrind-path option

mysql-test-run.pl, 31
vardir option

mysql-test-run.pl, 31
mysql_client_test, 24

verbose option
mysql-stress-test.pl, 34
mysqltest, 22

version option
mysqltest, 23

view-protocol option
mysql-test-run.pl, 31
mysqltest, 23

vs-config option
mysql-test-run.pl, 31

W
wait-timeout option

mysql-test-run.pl, 32
warnings option

mysql-test-run.pl, 32
with-ndbcluster option

mysql-test-run.pl, 32
with-ndbcluster-all option

mysql-test-run.pl, 32
with-ndbcluster-only option

mysql-test-run.pl, 32
with-ndbcluster-slave option

mysql-test-run.pl, 32
with-openssl option

mysql-test-run.pl, 32

Index

56

	The MySQL Test Framework
	Table of Contents
	Preface
	Chapter 1. Introduction to the MySQL Test Framework
	Chapter 2. MySQL Test Framework Components
	2.1. Test Framework System Requirements
	2.2. The Test Framework and SSL
	2.3. How to Report Bugs in the MySQL Test Suite

	Chapter 3. Running Test Cases
	3.1. Constraints on Simultaneous Test Runs

	Chapter 4. Writing Test Cases
	4.1. Writing a Test Case: Quick Start
	4.2. Test Case Coding Guidelines
	4.2.1. File Naming and Organization Guidelines
	4.2.2. Test Case Content-Formatting Guidelines
	4.2.3. Naming Conventions for Database Objects

	4.3. Sample Test Case
	4.4. Cleaning Up from a Previous Test Run
	4.5. Generating a Test Case Result File
	4.6. Checking for Expected Errors
	4.7. Controlling the Information Produced by a Test Case
	4.8. Dealing with Output That Varies Per Test Run
	4.9. Passing Options from mysql-test-run.pl to mysqld or mysqltest
	4.10. Specifying Test Case-Specific Server Options
	4.11. Using Include Files to Simplify Test Cases
	4.12. Controlling the Binary Log Format Used for Tests
	4.12.1. Controlling the Binary Log Format Used for an Entire Test Run
	4.12.2. Specifying the Required Binary Log Format for Individual Test Cases

	4.13. Writing Replication Tests
	4.14. Thread Synchronization in Test Cases
	4.15. Other Tips for Writing Test Cases

	Chapter 5. MySQL Test Programs
	5.1. mysqltest — Program to Run Test Cases
	5.2. mysql_client_test — Test Client API
	5.3. mysql-test-run.pl — Run MySQL Test Suite
	5.4. mysql-stress-test.pl — Server Stress Test Program

	Chapter 6. mysqltest Language Reference
	6.1. mysqltest Input Conventions
	6.2. mysqltest Commands
	6.3. mysqltest Variables
	6.4. mysqltest Flow Control Constructs
	6.5. Error Handling

	Chapter 7. Creating and Executing Unit Tests
	Index

